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SynthBuilder is a graphical, extensible, object-
oriented application for interactive, real-time design
of audio signal-processing patches. It played a major
role in the development of coupled-mode synthesis
[Van Duyne 1997), virtual analog synthesis [Stilson
and Smith 1996}, and enhancements to physical-
modeling synthesis such as the lossless, click-free,
pitch-bendable delay line (Van Duyne et al. 1997). It
was created primarily for prototyping physical mod-
els, as part of the Stanford Sondius physical-model-
ing project (see http://www.sondius.com), although
it can also be used for effects processing as well as
other types of synthesis algorithms.

SynthBuilder was written by Nick Porcaro, with
significant contributions by David Jaffe, Pat
Scandalis, Julius Smith, Tim Stilson, and Scott Van
Duyne. It derives much of its functionality from
the Music Kit (developed by NeXT Computer, Inc.
and later by CCRMA) {Smith, Jaffe, and Boynton
1989} and the NeXT Draw application, both writ-
ten in the Objective-C language, The first version
of SynthBuilder was inspired by GraSP, a prototype
for a graphical Music Kit editor by Eric Jordan
[David Jaffe, advisor) at Princeton University in
1992. GraSP was in turn preceded by SynthEdit,
another early prototype at NeXT (Minnick 1990).

In 1997, development of SynthBuilder moved to
Staccato Systems, where it was ported from its
original version (which ran only on the NEXTSTEP
operating system, with the signal processing run-
ning on Motorola DSP5600x signal processors) to a
more portable implementation that runs on Win-

Computer Music Journal, 22:2, pp. 35-43, Summer 1998
© 1998 Massachusetts Institute of Technology.

SynthBuilder: A Graphical
Rapid-Prototyping Tool
for the Development of
Music Synthesis and
Effects Patches on
Multiple Platforms

dows and other platforms. As of November 1997,
SynthBuilder runs on NEXTSTEP for Motorola and
Intel hardware (release 3.2 or later) using DSP5600x
processors, and OpenStep 4.2 for Windows 95 using
the host processor. See the World Wide Web site
http://www.staccatosys.com/ for information on
how to obtain a free version of SynthBuilder, includ-
ing detailed on-line documentation and examples.

Overview

SynthBuilder allows the user to graphically create
sound-synthesis programs [patches), consisting of
interconnections (called audio patch cords or midi
cables, after their physical counterparts) between
digital audio signal-processing elements (unit gen-
erators) and event-processing elements (note fil-
ters). Events are represented in a flexible
representation (note) capable of containing arbi-
trary groups of parameters. (Unlike the Music Kit,
SynthBuilder uses lowercase names for its objects.)
A MIDI “front end” converts MIDI messages into
notes. SynthBuilder makes a patch active by creat-
ing a Music Kit “shadow” of the patch and its con-
nections, with each graphical object shadowed by
a Music Kit synthesis or event-processing object.
The patch then runs in real time and is playable
and adjustable from real or virtual MIDI devices,
as well as from the graphical interface that the
user creates. No “compute-then-listen” cycle is re-
quired, and no code need be written. However, ad-
vanced users can angment SynthBuilder's
functionality by writing their own dynamically
loadable unit generators and note filters.
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that both unit generators
and note filters can have
midi cable connections,
but only unit generators
can have audio patch cord
connections.

Figure 1. SynthBuilder
patch for a simple
plucked-string algorithm.
The thick lines are midi
cables, the thin lines are
audio patch cords. Note
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This article will discuss SynthBuilder from a
user's standpoint, and will also supply some im-
portant implementation details.

Graphical Interface

The user sees note filters, unit generators, and
user-interface objects as graphical icons in a
SynthBuilder patch, along with text, lines, and
other graphics. Figure 1 shows a SynthBuilder
patch for a simple plucked:string algorithm.
MNeXT's Draw application (whose source code is
publicly available) served as a good starting point
for SynthBuilder. Draw already includes basic
drawing features, such as text fonts, lines, poly-
gons, curves, grouping, colors, rulers, an alignment
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grid, multiple documents, copy/paste, drop/drag of
images, and export to two graphic formats: Tagged
Image File Format TIFF) and Encapsulated
PostScript [EPS). SynthBuilder augments Draw
with a browser that contains two elements: a hier-
archical catalog of unit generators and note-filter
classes, and an icon well from which users can drag
instances to drop into a patch. SynthBuilder also
adds tools for drawing connections between these
elements: a line-routing algorithm (Rosati 1992 for
clearly and legibly depicting the connections, a hi-
erarchical subpatch mechanism, and numerous
other tools for designing synthesis instruments,
The Draw user-interface paradigm is carried for-
ward to all elements of a patch. For example, text
annotations, graphics, unit generators, note filters,
and subpatches can be freely combined, grouped,
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Figure 2. One-zero filter
inspector, When the slid-
ers are moved, changes in
the state of the filter are

made on the waveform
display and on the D3P
for host, depending on the
platform) in real time.

formatted, and copied and pasted within a docu-
ment or between documents. In addition, any of
these elements can be inspected. When the user
double-clicks on a graphical item, the inspector
panel for that item displays itself. For example, the
line inspector allows setting of line width,
whether there are arrowheads at the ends of the
line, and various other attributes. In the case of
unit generators and note filters, the inspector al-
lows the user to adjust variables that affect the
way the element processes audio or notes. The
user makes these adjustments by moving sliders or
typing into a text field in real time during synthe-
sis. The changes are heard immediately. Figure 2
shows the inspector for a one-zero filter.

Subpatches—Voices, Instruments, and Processors

Hierarchical subpatches serve a number of pur-
poses, While they can be used for any arbitrary en-
capsulation, they are typically used in three
commeon situations. First, they can represent indi-
vidual voices in a polyphonic instrument. Each of
these voices is managed by a single voice allocator
note filter (see “Voice Allocation,” below). Second,
subpatches can represent individual instruments in
a polytimbral context. In this case, each instrument
has its own voice allocator. Finally, subpatches al-

low the user to specify how a patch is distributed
across multiple processors [see “Multiprocessor
Support,” below). The processor assignment can be
made for the instrument as a whole, or even di-
vided up within an instrument. A subpatch can op-
tionally inherit the processor assignment from the
subpatch above it. For example, a typical synthesis-
oriented (as opposed to effects-oriented) patch has
subpatches containing several musical instrument
algorithms driven by MIDI and/or a score. Each
polyphonic instrument algorithm in turn has a
subpatch for control, as well as multiple subpatches
that correspond to voices, as shown in Figure 3. A
typical voice subpatch is shown in Figure 4.

Subpatches support several mechanisms to aid
code-sharing and work by development teams.
These include variations, linked subpatches, and
subscribe/publish. Variations are different ver-
sions of the same subpatch, only one of which is
active at a given time. The user selects the active
variation from a configuration panel in the top-
level patch. This provides a convenient mecha-
nism for maintaining a single top-level patch that
will run on many different digital signal-processor
|DSP) card configurations. Linked subpatches sup-
port consistency between copies of a patch; if you
change one of the subpatches in a linked set of
subpatches, the others are automatically changed
along with it. Subscribe/publish facilitates sharing
and version control of subpatches among a devel-
opment team.

Implementation of the Graphic Representation

The graphical representation of unit generators and
note filters is implemented in a subclass of the
Draw application’s Graphic class, called Element-
Graphic. ElementGraphic contains functionality for
operations such as drawing, moving, and pin rota-
tion. It also adds support for an inspector. An early
implementation of SynthBuilder contained a generic
inspector mechanism, but this proved inadequate
for describing the behavior of complex unit genera-
tors and note filters. For example, when adjusting a
filter, the user would like to see a graph of phase
and frequency response [see Figure 2). To make this
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Figure 3. Typical synthe-
sis-oriented patch. Perfor-
mance data comes from
prerecorded scores, live
MIDI, or user-interface
actions such as dragging a
slider or clicking on the

virtual keyboard. Instra- Figure 4. Typical instru- clarinet voice. Another
ment subpatches (such as  ment voice. The voice al- subpatch containing con-
the flute, harp, clarinet, locator feeds three linked  trols specific to the voice
and horn shown above) instances of a subpatch, feeds the voice allocator.
are polyphonic, as shown  each containing a single

in Figure 4.
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possible, SynthBuilder provides a system of dvnami-

cally loadable bundles that allows a custom inspec-
tor to be specified and dynamically loaded for each
class of unit generator or note filter.

Each note-filter or unit-generator bundle has, as
its primary class, a subclass of ElementGraphic
that is responsible for adding appropriate user-in-
terface controls for that unit generator or note fil-
ter. Other resources in the bundle include a TIFF
[image) file for its representation in the document,
an example patch, and a usage document that is
accessible from the help system.

The bundle architecture also has the advantage of
allowing each unit generator or note filter to be de-
veloped and tested independently from the main ap-
plication. This facilitates integration with existing
NEXTSTEP interfaces developed by others at
CCRMA and elsewhere. This has helped
SynthBuilder to evolve into a common platform for
the work of a number of independent researchers.
For example, the filter unit generators all use Gary
Scavone's waveform display tool, which shows the
filter's amplitude, phase, group delay, and impulse
response. The envelope handler uses a graphical
view derived from Fernando Lopez-Lezcano's enve-
lope editor. The memory module allows viewing
andfor playing of its contents with an external tool,
such as Perry Cook’s Spectro application. (For infor-
mation about these three tools, see CCRMA's World
Wide Web site, http://www-ccrma.stanford.edu.)

Bundles make it easy for sophisticated users to
develop new unit generators and add them to
SynthBuilder. In the course of our physical-model-
ing development, several such unit generators
were created, including a periodically triggered ex-
citation table (PET) unit generator for bowed
strings (Jaffe and Smith 1995), a special delay line
for accurate handling of high pitches in guitars
(Van Duyne et al. 1997), and a Moog-style voltage-
controlled filter (VCF) (Stilson and Smith 1996).

Implementation of Synthesis-Algorithm Control

To control synthesis algorithms, SynthBuilder
makes extensive use of the Music Kit's support for
events and scheduling, especially the Music Kit's

MNoteFilter class. While the concept of unit genera-
tors is very familiar, dating back to Max Mathews'
Music languages (Mathews 1969), note filters are a
more recent innovation. Each note filter is event-
activated; that is, a note filter performs an action
when it receives an event, either from MIDI or
from the user interface. Typically, a note filter per-
forms some action on each event it receives via its
inputs, then passes the modified event on to its
outputs. Note filters also have access to the Music
Kit scheduler, and can schedule callbacks for par-
ticular times in the future. The name “note filter”
derives from the use of Note objects [packages of
parameters) to represent the events handled by
note filters. The Music Kit Midi object converts
each incoming MIDI message to a Music Kit Note
object, which is then sent to the first of a chain or
network of note filters. After being handled by a
note filter, the note travels to the next note filter
in the network, and so forth.

Note filters also provide the means for mapping
note parameters to low-level synthesis control.
When drawing a midi cable from a note filter to a
unit generator, the user is actually connecting to a
hidden note filter that is associated with the par-
ticular unit generator. When a note reaches it, the
note filter translates the note's parameter values
into calls to the unit generator’s instance methods,
which in turn set the unit generator’s instance
variables. The user sets up this mapping from the
SynthBuilder unit-generator inspector, which lists
the unit generator’s instance methods and allows
an association to be made with a note parameter.

An example will help clarify how all this works:
First, the user draws a simple patch by dragging
and dropping a Midi-In note filter, a voice-alloca-
tor note filter, an oscillator unit generator, and a
stereo speaker unit generator which represents the
audio output. One then connects the oscillator
output to the input of the stereo speaker, using the
audio-patch-cord connection tool. Next, one con-
nects the output of the Midi-In note filter to the
input of the voice allocator, and the output of the
voice allocator to the MIDI input of the oscillator,
using the midi cable connection tool. One com-
pletes this simple patch by double-clicking on the
oscillator, bringing up its inspector, and specifying
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Figure 5. Simple oscillator
patch. Notes containing a freq
parameter coming out of the
voice allocator get mapped to
the setFrequency instance
method of the oscillator.

that the “freq” parameter in incoming notes be
mapped to the “setFrequency” instance method.
Figure 5 shows this simple patch.

One then proceeds to play the patch. Depressing
an A above middle C on a MIDI keyboard has the
following effect: the Midi-In note filter (using its
Music Kit shadow object, the Midi object) creates
a note in response to the MIDI note-on message,
giving it the ordinary MIDI note-on parameters
[key number, velocity, and channel). The Midi-In
note filter sends this note to its output, which is
then sent to the voice allocator. The voice alloca-
tor inserts a parameter called “freq” into the note,
containing the frequency (in Hertz) corresponding
to the key number. Next, the note leaves the voice
allocator and travels to the oscillator, which has
the effect of invoking the “processNote” method
of the note filter associated with the oscillator.
This note filter sees that the “freq” parameter is
present in the note, and invokes the unit-generator
method “setFrequency,” which changes the oseil-
lator frequency on the Music Kit shadow object
{which is running on the DSP or the host, depend-
ing on the platform) to 440 Hz.

Voice Allocation

Voice allocation is managed in SynthBuilder by a
note filter called the voice allocator, based on the
design of the Music Kit's SynthInstrument class.
The voice allocator manages a set of voices, usu-
ally encapsulated as subpatches, with each repre-
senting a monophonic sound-producing entity.
The voice allocator keeps track of which voices
are currently sounding. Each voice allocator repre-
sents a single MIDI channel. For example, control-
ler information is forwarded to all voices, while
polyphonic aftertouch is routed to the appropriate
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voice. For creating multichannel synthesizers,
multiple voice allocators are used. See Figures 1, 3,
and 4 for an illustration of this.

In SynthBuilder, onié is in effect designing synthe-
sizers or effects boxes. While MIDI arguably does
an adequate job of depicting information passed
from a keyboard to a synthesizer, it is inadequate
for describing all that happens within a synthesizer.
For example, since most synthesizers support enve-
lopes that gradually decay after a note-off is re-
ceived, the MIDI note-off does not mean that a
voice is available for reallocation. It merely signals
the beginning of the final portion of the note.

When designing a synthesis algorithm, you often
need to know when a note is truly over. For ex-
ample, vou might want to produce a different kind of
attack, depending on whether a new note-on occurs
before or after the preceding note has fully died
away. However, the knowledge as to how much time
is needed to finish the note may be local to a unit
generator or note filter deep within the voice. There-
fore, a mechanism is provided for communicating
back from the unit generators to the voice allocator,

The voice allocator handles computing frequen-
cies for each voice based on pitch-bend param-
eters, as well as managing the damper pedal. In
addition, if the voice allocator receives a note for
which no voice is available, it preempts the oldest
running voice in such a way as to guarantee no
click. Finally, the voice allocator also handles the
case of a monophonic voice, such as a flute, in
which connections between notes are important,

Unit Generator Running Order

The set of unit generators in a patch can be viewed
as a list of subroutines that are called once for
each output sample. (More precisely, each unit
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generator reads and writes a vector of samples
each time it is run; see “Optimizations,” below.)
The order in which these unit generators are run is
significant in some cases. For example, if unit gen-
erator A writes to unit generator B and unit gen-
erator B writes to unit generator C, there will be
no delay if the running order is A, B, C; but there
will be two “hidden” delays if the order is C, B, A.
Hidden delays are particularly important in algo-
rithms that include feedback, such as delay-line
loops. Designers of feedback systems need to ac-
count for these delays, or the effective loop lengths
will be slightly longer than desired. SynthBuilder
indicates such hidden delays by displaying a small
delay symbol on affected audio patch cords. Figure
1 shows such a delay symbol on the top input of
the adder. While it is impossible to completely
eliminate hidden delays from feedback systems,
they can be reduced to one hidden delay per feed-
back loop. As an aid in minimizing hidden delays,
SynthBuilder provides a tool that analyzes the sig-
nal graph and then reorders the unit generators to
an optimal order.

Debugging a Patch

SynthBuilder has extensive support for tracing the
How of notes through a patch. Individual note fil-
ters and unit generators can be selectively traced.
Certain note types (e.g., note-on) can be selec-
tively traced. The format of the tracing is also
controllable; brief or verbose information about
the contents of the note, timing information, and
low-level DSP information can selectively be en-
abled or disabled.

In addition, the ease of modifying patches in
SynthBuilder makes it possible to debug by isolat-
ing various portions of the patch and examining
their behavior in a simpler context. An audio
patch cord “probe” tool allows the user to listen
to a particular audio patch cord and to record its
signal to a sound file, which can then be studied.
Similarly, midi cables can be selectively muted or
unmuted, allowing or disallowing the flow of
notes.

Multiprocessor Support

SynthBuilder uses the Music Kit's multiprocessor
architecture to distribute synthesis resources
among a set of processors. Multiprocessor support
was built into the Music Kit from its inception in
1987, However, it was not until 1990 that the first
actual multi-DSP hardware port was made, to the
Ariel QuintProcessor (Jaffe 1990). Then, with the
release of the Music Kit for Intel (Jaffe, Smith, and
Porcaro 1994), it became possible to use multiple
low-cost DSP cards in a PC.

In 1995, the Sondius Project sponsored the
building of a low-cost multiprocessor DSP engine
with faster DSPs than had been available for the
QuintProcessor. This engine 15 known as Franken-
stein (Putnam and Stilson 1996). Eight Motorola
56002 evaluation modules were connected via
their host ports to an ISA interface that allowed
the Music Kit to address each DSP as a separate
computing resource. In addition, the modules were
over-clocked at 76 MHz, giving the Frankenstein a
computation power of approximately 300 DSP
MIPS (millions of DSP instructions per second).

Frankenstein’s main purpose was to test com-
plex patches, such as the commuted-synthesis pi-
ano [Smith and Van Duyne 1995; Van Duyne and
Smith 1995). Several multi-instrument scores were
developed to exploit Frankenstein’s full potential,
such as the Jazz Trio sound example that accom-
panies this article. [Sound examples for this article
will appear on the forthcoming Computer Music
Journal Sound Anthology CD, Volume 22. —Ed.|

Optimizations

For the sake of efficiency, SynthBuilder computes
vectors of samples, rather than one sample at a
time (Smith 1989). This serves to amortize the
price of the preamble and “postamble” code for
each unit generator. The larger the tick (vector)
size, the greater the amortization. However, the
tick size also determines the smallest possible de-
lay in the recursive structures that often arise in
physical-modeling implementations. For example,
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if the tick size is 44 and the sampling rate is 44
kHz, then the highest pitch possible from a
Karplus-Strong plucked string is 1,000 Hz.
SynthBuilder currently uses the Music Kit's tick
size of 16.

Having a tick size greater than one implies that
it is not possible in SynthBuilder to create arbi-
trary filter structures composed of unit delays,
scales, and adds. To solve this problem, we are
considering providing a set of nonoptimized unit
generators based on a one-sample tick size. These
can be used to develop arbitrary structures, which
may then be encapsulated in custom; optimized
unit generators.

Of course, with any real-time system there is a
limit to how much the system can accomplish in
real time. For patches that exceed the computa-
tional resources, SynthBuilder allows you to
record a MIDI stream, then play it back, while
computing the samples and writing them to a
sound file. In this case, the processor need not
keep up with real time, and memory is the only
limitation.

Recent Work

As of this writing, SynthBuilder has been ported to
Windows 95/NT, using OpenStep 4.2, also known
as the Yellow Box of the Apple Rhapsody operat-
ing system. As of November 1997, Apple’s posi-
tion is that Rhapsody will work on Intel platforms
running Windows 95/NT, as well as on Mac OS
5.0 systems using the PowerPC processor. The
new version of SynthBuilder is very similar to the
NEXTSTEP version, except that it follows Win-
dows user-interface conventions.

In addition, the Music Kit has been replaced by a
new low-level system, called SynthServer, that can
be easily ported to a variety of systems.
SynthServer is a synthesis engine in that it con-
sists of core synthesizer code without the user in-
terface. It contains floating-point implementations
of the SynthBuilder unit generators and note fil-
ters, as well as facilities for handling MIDI and
scheduling notes, reading and writing sound files,

and performing real-time audio. Unlike the DSP
version of SynthBuilder, SynthBuilder and
SynthServer run as two separate processes.

SynthBuilder communicates with SynthServer
using an interchange language called SynthScript.
A SynthScript patch contains a list of unit genera-
tors and note filters, along with interconnection
information, initial parameter values, and map-
pings. When SynthBuilder runs a patch, it gener-
ates a SynthScript representation and sends it to
SynthServer via an inter-process communication
[(IPC) mechanism. User-interface actions, such as
moving a slider or playing a note on a virtual key-
board, also send SynthScript to the server.
SynthScript also contains a specification for high-
level performance controls, which are exported to
the SynthServer control panel.

The separation of the user interface {SynthBuilder]
from the engine (SynthServer] makes it possible to
run the synthesis part of the patch in a stand-alone
fashion without SynthBuilder. In fact, any applica-
tion that generates SynthScript can communicate
with SynthServer. In addition, SynthServer can read
patches from a file [specified from its control panel),
and perhaps in the future from a MIDI message.

Finally, we are augmenting the note-filter
mechanism with a text-based interpreted lan-
guage, containing scheduling primitives and opera-
tors for manipulating notes. Thus, users will have
three options, depending on their needs and level
of expertise: they can use existing note filters;
they can write code in the note-filter language; or,
for maximum efficiency, they can write their own
dynamically loadable, precompiled note filters.
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