252

A Lossless, Click-free, Pitchbend-able
Delay Line Loop Interpolation Scheme

Scott A. Van Duyne
David A. Jaffe
Gregory Pat Scandalis
Timothy S. Stilson

Center for Computer Research in Music and Acoustics, Stanford University
savd{@ecrma.stanford.edu, daj@ccrma.stanford.edu,
gps@stanford.edu, stilti@stanford.cdu

Abstract

An efficient method for signal controllable fractional delay implementation has been found. It co m-
bines the flexible control of linear interpolation with the frequency independent losslessness of allpass
interpolation, avoiding the undesirable effects of cach method.

1 Problem Statement

The development of high quality, well calibrated, physi-
cal modeling synthesis algorithms based on Karplus-
Strong-style feedback loops [3][2] requires the use of
delay lines with non-integer lengths. Ideally, these de-
lay lines should have two important features:

(1) Their lengths must be smoothly and fractionally
variable by some control signal in order to imple-
ment pitch bend, glissando, and vibrato effects.

(2) They must be lossless at all frequencies to mini-
mize unwanted decay in physical modeling feed-
back loop structures.

Unfortunately, no standard methods for interpolation of
non-integer length delay lines are in general use which
have both of these required features. On the one hand,
non-integer length delay lines that use linear interpola-
tion, or other FIR interpolation methods, can be varied
smoothly in length by a control signal, but they have
unsatisfactory energy losses caused by the FIR interp o-
lation filter itself in the high frequency region and, in
particular, in high pitched loops. This causes high
pitched musical notes to decay away too guickly.

On the other hand, standard allpass interpolation,
known since the beginnings of Karplus-Strong-style
string modeling [2], solves the energy loss problem for
the fixed pitch case. However, when implementing
pitch bend, glissando, or vibrato effects, allpass filters
introduce undesirable artifacts, such as audible clicks.
This is primarily due to the internal state in the Tecur-
sive allpass filter, which must be handled carefully

when changing the filter coefficient. Until now, the
practical choice has been between allpass interpolation
for high frequency sustainability on the one hand, and
linear interpolation for flexibility of pitch bend control
on the other.

We have formulated a new delay line interpolation
structure which has the time-varying delay length flex i-
bility of simple linear interpolation, while retaining the
energy conserving effects of fixed allpass interpolation.
This was achieved by combining previous results from
three different quarters: a smooth waveguide legato
implementation crossfading trick [1], some initial re-
sults in click reduction in time varying fractional allpass
interpolation [6], and a few psychoacoustical observ a-
tions about just noticeable differences in pitch [5].

2 Puzzle Pieces

2.1 Linear Interpolation

For good tuning of a Karplus-Strong loop, the delay line
length must be equal to:

DelayLength = SamplingRate/Frequency

This generally comes out to a non-integer number of
samples, and rounding to the nearest integer is just not
good enough at current sampling rates, e.g., 44.1 kHz.
It is easy to delay a signal by 25 samples, but delaying a
signal by 25.3 samples is problematic in a sampled sy s-
tem since (.3 samples is undefined!

Linear interpolation solves the problem by taking a
weighted average of the two closest delay lengths. The

PROCEEDINGS ICMC97

following linear interpolation, illustrated in Figure 1,
implements a delay of 25.3 samples:

OUT(n)=0.7 % IN(n—25)+ 03 x IN(n - 26)

The problem with linear interpolation is that high fre-
quencies tend to get wiped out quickly with repeated
averaging. Remember that the original Karplus-Strong
plucked string algorithm [3] called for a two point aver-
age filter in a delay line feedback loop, similar to the
equation above. The purpose of the averaging filter was
to smooth the waveform a little bit each period, thereby
forcing the high frequencies to die away faster than the
low frequencies, and to create the qualitative effect of a
plucked string decay. This effect is very strong for high
pitched loops since the delay line part is short and the
loss is greater for high frequencies. This means getting
a good long sustain on a Karplus-Strong-style high gu i-
tar string sound is impossible (unless you don't care if it
is in tune!).

On the other hand; the linear interpolation approach is
very flexible. If the you want to change the delay length
continuously, as in bending the pitch of a note in the
plucked string model, then just slide the linear interp o-
lator along the delay line adjusting the sample weights
appropriately. T

More extravagant weighted averages, known as FIR
interpolation methods, take advantage of more than just
two adjacent samples and can improve the frequency
response of the interpolation some, but also are in-
creasingly more difficult to compute. Laakso et al. give
a comprehensive review of both FIR and allpass inter-
polation design methods in [4).

2.2 Allpass Interpolation

Allpass interpolation solves the problems of high fre-
quency energy loss in feedback loops which are pre-
sented by lincar interpolation and FIR schemes. It
trades error in the magnitude response, which causes
unwanted decay in the high frequencies, for error in the
phase response, which only causes incidental detuning
of the highest partials. Allpass interpolation in the
context of Karplus-Strong models was first proposed by
Jaffe and Smith [2] in 1983. They noted that, for a de-
sired fractional delay of d samples, an allpass coef¥i-

cient of
a=(1-d)/(1+d)

could be chosen as a reasonable approximation.

The following allpass interpolation scheme, illustrated
in Figure 2, implements a delay of 0.3 samples:

PROCEEDINGS

OUT(n) = ax x(m)+x(n—1)-ax OUT(n-1)
- where, a=(1-0.3)/(1+0.3) = 05385,

Note that allpass interpolation is recursive: that is, the
interpolation uses not only a combination of input sam-
ples, x(n) and x{n-1), but also adds in part of its previ-
ous output sample, OUT(n). If you continuously change
the cocfficient, a, to create a pitch bend or ghssando
effect, then very special attention must be paid to cor-
recting for the recursive effect if you want to avoid
clicks and glitches in the sound as you change pitch [6].
Furthermore, the problem of what to do when you
change the integer part of the delay line length, as well
as the fractional allpass interpolation part, is an other
complicated problem.

Minimizing the transient effect The discontinuity
resulting from changing the coefficient, a, can be mini-
mized by keeping the coefficient value as close to zero
as possible. The transient effect of changing the coeffi-
cient rings out at a rate proportional to the series: a, a”,
a, ... We note that if the delay, d, is kept within the
unit range, 0.618 to 1.618, then the coefficient, a, re-
mains between -0.236 and +0.236. This means that,
with d in this range, the transient effect after 5 samples
is & maximum of (0.236)° or about 62 dB down. In
effect, the allpass interpolation filter may be held to a 5
sample warm up time. [6] makes a similar obse rvation.

2.3 The Legato Crossfade Trick

Another piece of the puzzle is a solution to the problem
of producing legato transitions between tones of differ-
ent pitch using the a single feedback loop. If you

- change the delay length suddenly there is a click in the

sound. If you gradually glide the delay length from the
first value to the second, using, for example the sliding
weighted average linear interpolation method described
above, you will hear and unwanted glissando effect,
rather than a legato effect.

A legato crossfade method is described briefly in [1] in
the context of legato commuted synthesis violin bowing.
The first part of the legato trick was the use of a circu-
lar buffer delay line implementation. Circular buffer
simply means that the delay line is implemented in a
large fixed length piece of memory with a read pointer
chasing a write pointer around, always the appropriate
number of samples behind it. Although the actual delay
length is shorter than the full length of the memory be-
ing used, nevertheless, the full memory is filled with
similar looking waveform. That is, as the write pointer
progresses through the cicular buffer memory, it lays
down perfectly good waveform at the currently speci-
fied pitch throughout the full memory buffer.

ICMC97

253

254

Jaffe noted that if you simply introduce two read point-
ers, one set at the delay of the first note, and the second
set for the delay of the second note, then you can cross-
fade between the two read pointers, over the course of
about 15-30ms, to produce a very realistic legato, nof
glissando, effect. This structure is illustrated in Figure
3. There is no glitch in the tone since the full memory
buffer is filled with reasonable looking waveform at the
current pitch. Therefore, the second read pointer is
looking are perfectly good data initially and the cross-
fade is gradual. Stilson developed a similar trick, ind e-
pendently, for use in a pitch shifting algorithm.

3 Glissable Allpass Interpolation

By combining elements of the interpolation and legato
methods descnibed above, we can find a practical
structure for a flexible lossless fractional delay line.
The basic inspiration is this: Let's view glissando as a
lot of very fast, tiny, legato transitions. Start with a
circular buffer delay line with two allpass interpolated
readers. Then send new fractional delay length values
to the alternating allpass interpolated readers every 16
samples, for example.

What is the problem with this? The allpass interpol a-
tion filters will be producing clicks every time a reader
i set to a new position! But the transient effect lasts
only 5 samples if the fractional delay range is main-
tained between 0.618 and 1.618! The 5 warm-up can be
ignored by using a special crossfading function which
waits 5 samples before crossfading over to the newly set
allpass interpolated reader. When using a 16 sample
alternation rate, this leaves 11 samples to do the actual
crossfade, which, in practice, is enough. See Figure 4.

Psychoacoustical Detail The human hearing system is
only able to detect a finite number of different pitches.
Two tones which are sufficiently close together in pitch
become indistinguishable. There is a just noticeable
difference (JND) threshold for human pitch differenti a-
tion. The number of JNDs per octave varies with the
register, but a representative worst case for us is that
there are about 280 JNDs between 1000 Hz and 2000
Hz (or, approximaiely, between c6 and ¢7) [5]. A JND
comes out to about 0.1 samples in a Karplus-Strong
feedback loop delay length for a 1000 Hz tone being
computed at a sampling rate of 44.1 kHz. It is easy to
show that running the alterhating crossfader at a tick
rate of once per 16 samples, and using a maximum gli s-
sando rate of one JND per tick, that we can gliss an

PROCEEDINGS

octave from c6 to ¢7 in about one tenth of a second

(280x16/44100=0.1).

DSP Implementation Trick Many fixed-point DSP
chips can perform very fast multiply-add operations but
do not support a fast divide operation; so, computing
the allpass coefficient,

a=(1-d)/(1+d),
every 16 samples is actually rather inconvenient. For-
tunately, we may expand the expression in a Taylor

~ Series about the point, d =1, giving,

(d-1) (d-1* (d-1y’
2 4 8

a=-—

a very efficient computation using only multiplies, adds
and, possibly, right shifts. Maximum emor in three
terms i1 0.024 samples. Recall a JND at 1000Hz is
about 0.1 samples.

4 Acknowledgments

Funding for this work was provided by the Stanford
University through the Office of Technology Licensing
as part of the Sondius® trademark development pro-
gram, in collaboration with the Center for Computer
Research in Music and Acoustics.

References

[1] Jaffe, J., and J. Smith. 1995, “Performance Ex-
pression in Commuted Waveguide Synthesis of
Bowed Strings.” Proc, ICMC, Banff,

[2] Jaffe D, and J. Smith. 1983, “Extensions of the
Karplus-Strong Plucked String Algorithm,” Com-
puter Music Journal, Volume 9, Number 2.

[3] Karplus, K., and A. Strong. 1983. “Digital Syn-
thesis of Plucked-String and Drum Timbres,”
Computer Music fournal, Velume 7, Number 2.

[4] Laakso, T.; V. Valimaki; M. Karjalainen; and U.
Laine. 1996. “Splitting the Unit Delay,” IEEE
Signal Processing Magazine, January.

[5] Olson, H. 1967. Music, Physics, and Engineering,
Dover Publications, Inc.

[6] Walimaki, V.; T. Laasko; and J, Mackenzie. 19935,
“Elimination of Transients in Time-Varying All-
pass Fractional Delay Filters with Application to
Digital Waveguide Modeling,” Proc. [CMC,
BanfT.

ICMCS97

IN—>

delay line

lH{n—Eﬁ}‘ ‘ IN(n-26)

linear
interpolation >OUT
Figure 1: Flexible Linear Interpolation
: x(n) allpass
IN— delay line " iterpolation [—>OUT
Figure 2: Fixed Allpass Interpolation
legato —
transition linear
controller \ interpolation
IN—{ circular buffer delay line \ N !
linear legato
interpolation crossfade [~ OUT

scheduling
controller

synchronous |

Figure 3: Legato Transition Trick

allpass
interpolation

I

IN —J{ circular buffer delay line

|

allpass

interpolation

PROCEEDINGS

alternating
crossfade

new reader| _
old resder

Figure 4. Glissable Allpass Interpolation

ICMC97

—>0UT

