

COMPUTER GRAPHICS AND PHYSICS GREGORY PAT SCANDALIS

CALIFORNIA STATE POLYTECHNIC STATE UNIVERSITY SAN LUIS OBISPO, CALIFORNIA 1984

Physics 461 Physics 462 Date Submitted: 10/24/84 Project Advisor: Dr. Chris de Latour

CONTENTS

Introdu	•						
	The Computer1 Computer Graphics and Physics1						
CHAPTER 2 The Project							
2.2 H	The Project						
CHAPTER 3 Graphics							
3.2 W	The Terminal5 Vriting a Graphics Program6 Running a Graphics Program7						
CHAPTER 4 The Hardware							
4.2 T	The Camera9 The Trigger Box9 Processing The Film9						
CHAPTER 5 3-D Graphics							
5.2 T 5.3 S 5.4 R	Transformations						
CHAPTER 6 Matrix Properties							
6.2 C	Basic Properties						

CHAPTER 7 GRAFIT

7.6 CHAPTE	The Program
_	Wave Equations
CHAPTE Movie	ER 9 1, D'alemberts Solution
9.1	D'alemberts Solution to the 1-D Wave Equation27
CHAPTE Movie	ER 10 2, Fourier Solution
10.2	Seperation of Variables
CHAPTE Movie	R 11 3, Fourier Solution to the Vibrating Membrane
11.2	The Problem
CONCLU	JSION38
	OIX 1
	OIX 242 Atic for the Trigger Box
	OIX 345 ng of GRAFIT
	OIX 457 ng for Movie 1

APPENDIX 5	
APPENDIX 663 Listing for Movie 3	
BIBLIOGRAPHY65	

LIST OF FIGURES

Structure of The Senior Project
FIGURE 25 Direct View Storage Tube
FIGURE 3
FIGURE 413 Left Handed Coordinate system
FIGURE 514 Perspective Transformation
FIGURE 6
FIGURE 719 Operations Done by GRAFIT
FIGURE 821 Wright's Alogorithm
FIGURE 921 Visibility Test
FIGURE 1022 Stereo Views generated by GRAFIT
FIGURE 1122 Viewing Stereo Views
FIGURE 1223 Segment of String Used to Derive The 1-D Wave Equation
FIGURE 1325 Segment of Membrane Used to Derive The 2-D Wave Equation
FIGURE 1429 Story Board for D'alemberts Solution to the 1-D Wave Equation
FIGURE 15
FIGURE 16

1 - INTRODUCTION

1.1 THE COMPUTER

Perhaps no other tool of the Twentieth Century will change as many peoples lives as the 'computer'. The computer is a computational tool capable of doing hundreds of hours of tedious work in seconds; capable of making a bookeepers nightmare manageable; capable of turning a mildly complicated mathematical problem into several pounds of paper! Computer- Godsend or beast?

Two decades ago, computers, in particular computer output, began to take on new and exciting forms. Computers were used to do complicated tasks on spacecrafts; musicians at Columbia University used computers to control another new tool, the electronic synthesizer, creating avant-garde new music; the word 'digital' became a household word; the 'word processor' or text editor made the composition of written material more accessible.

One of the most exciting of the new output media is called 'Computer Graphics', a development that had to wait for today's computer with its rapid graphic capability. This media takes on a many diverse forms, from the simplest video game, to fantastically detailed movies used for entertainment and to verify complex scientific models. Certainly, a 3-D plot of the temperature distribution on a square plate tells the viewer a great deal more than several pounds of numerical output.

One of the fantastic things about studying Physics in the last few decades is that one no longer needs to be a Gauss or a Fourier; spending days doing tedious calculations, struggling to gain an insight into higher mathematics. Not to belittle the heuristic value of doing hand calculations, but no amount of tedious number crunching replaces the 'intuitive' feeling one gets from a picture. With the aid of computing machines, it is now possible to graphically explore mathematical properties of equations and models in Physics.

1.2 COMPUTER GRAPHICS AND PHYSICS

How do computer generated movies relate to Physics. Physics seeks to model what we see in nature with mathematics. Many times I've wanted to graphically verify the validity of a complex mathematical equation. I have felt that a picture would greatly inprove my understanding of such an equation.

I am reminded of a interesting story dealing with a man, blind from birth, who had his sight restored by modern surgery. When he was blind he had learned to operate a metal lathe. After his sight was restored he told friends that he wished to see what a lathe looked like. They took him to a local factory to see a lathe. When showed the lathe, he was very disappointed, and insisted he could not see it. He asked if he could feel it. After exploring, for several minutes, he announced that now he could see it. Apparently he had to see the lathe in

familiar terms, by touch, before he could understand it in unfamiliar terms, sight.

Perhaps with much wasted time and frustration the cured blind man could have 'seen' the lathe, but by allowing him to feel the lathe, the task became not one of frustration, but one of enjoyable enlightenment. I share our blind/sighted man's plight. I want to 'feel' the mathematics that I have studied. By analogy to our blind/sighted friend, I think that 'feeling' what I am learning would turn a frustrating tedious task into an enjoyable and enlighting experience. As elegant as an equation may be, it is worthless without a deep understanding of what that equation says. How does one achieve a deeper understanding?

The present method requires that the student wrestle with some problems from some new conceptual material, until connections are made to more familiar concepts. To augment this, the students are often given an opportunity, in the lab, to play with the concepts they are learning in the classroom. But in the lab it is often difficult to distinguish ideal point particles, gasses, frictionless surfaces, etc. etc..., from the real world (Physics does model the real world after all !!!)

Like our blind/sighted man, students must be able to 'feel' what they are doing first. This notion is not new, but what is relatively new is the idea of using computer graphics as a tool to graphically explore the realm of Physics.

As an example consider the Fourier series. I was frustrated by the mechanistic level on which I first understood, eveness, oddness, half range expansions, etc.,etc... What I did not understand I simply memorized. The expected occured, I promptly forgot what I memorized. Then, I started this senior project. One of my first programs allowed me to explore the Fourier series. I then spent an intense and enjoyable session playing with Fourier series. Of course, I could have done the same exploration with graph paper and a calculator, but it would have required more time and resolve than I possess. Computer graphics afforded me a very gratifying learning experience.

It should be noted, that exploring the Fourier series with a computer is not a replacement for learning the Fourier equations and their properties. Computer graphics simply gives one another view of the Fourier series. Both methods of learning are complementary.

The Physicist of days gone by had mathematics as his main 'hand tool'. The Physicist of the Twentieth Century now has within reach a new 'power tool', the computer. This tool has had a major impact on the commercial and scientific communities. so why is it given such a minor role in the educational community? Hopefully my senior project will play at least some small role in changing that.

2 - THE PROJECT

2.1 THE PROJECT

The title of my senior project is 'Computer Generated Movies and Physics'. I created computer generated movies of vibrating systems, that I hope will provide the viewer with insights not experienced before. The programs display four parameters, x,y,z and t. The movie format allows the display of time dependent solutions to various problems! The project was interdisciplinary, it involved concepts from Physics, Mathematics, Computer Science, Electronics and Photography.

FIGURE 1 - STRUCTURE OF THE SENIOR PROJECT. The project was interdisiplinary, drawing from many different fields.

Considering large amount of computer time that is required to generate a movie, only a few movies were made. The following are the situations that were generated:

- D'Alembert solution to the 1-D wave equation.
- 2) Fourier solution to the plucked string.
- 3) Solution to the vibrating square membrane.

2.2 HOW A MOVIE IS MADE

The method of creating a computer generated movie is simple. Computer pictures are drawn on a special terminal known as a graphics terminal. Once a picture is generated it is known as a 'frame'. This frame is then photographed off the screen with a movie camera set up to photograph single frames. To conserve computing time three pictures are taken of each frame.

The camera is a movie camera that can be checked out from Cal Poly A.V. This camera can be triggered by simply closing a switch. I could let the computer generate a frame and then trigger the camera by hand, however this would be very tedious. An alternative is to trigger the camera with a sound operated switch. After the computer finishes generating a frame, a command in the program rings the bell in the terminal. The bell sets off the sound operated switch which in turn triggers the camera.

Finally when all the frames are taken and the film is processed the resulting movie is a computer generated movie. Incidentaly, 1 second of the movie is composed of 18 frames. This means that a 3.5 minute movie is about 3600 frames. It takes about 1 minute to draw each frame, so 3.5 minute of movie is about 60 hours of computer time!

2.3 A FEW WORDS ABOUT THIS WRITE UP

This paper has been written in a sort of users guide style. I intend for this paper to provide a sort of reference on how to do graphics at Cal Poly, and how to write the programs used in the project. I have included all source code for the programs.

3 - GRAPHICS

3.1 THE TERMINAL

As I said earlier, the graphics are done on a special computer terminal known as a Graphics Terminal. This is a special terminal that allows the user to draw pictures. The terminal that I used was a TEKTRONIX 4006-M. The TEKTRONIX terminal has a direct-view storage tube (DVST) in place of a standard cathode-ray tube (CRT). This tube is much like the tubes used in a storage oscilloscope. Lines written on the DVST will persist for a long time. It is not possible to selectively erase parts of the DVST.

The type of graphics done on the TEKTRONIX terminal are known as 'vector graphics'. On the TEKTRONIX terminal it is possible to draw very straight lines or 'vectors' between two points. This is different from most 'raster scan' displays in which lines are created from discrete elements known as pixels.

The DVST, like a CRT, has a writing beam electron gun and a phosphor coated screen in addition it has a flood electron gun. The writing beam gun does not write directly on the phosphor, but on a fine mesh dielectric screen known as the storage grid. The storage grid is mounted between the writing beam gun and the phosphor screen. Initially the storage grid is uniformly negatively charged. High speed electrons strike this grid and dislodge some of the surface electrons. These electrons are captured by the positively charged collector. This leaves a net positive charge on the storage grid! Because the storage grid is a dielectric, other electrons cannot migrate, and a positive charged pattern is stored.

Independent of the writing gun is the flood gun. This gun uniformly covers (floods) the storage grid with low velocity electrons. Electrons approaching a positively charged region of the grid will pass through and strike the phosphor screen, causing light emission. Electrons approaching other parts of the of the grid will be repelled and will not pass through. Thus, the charge pattern stored on the grid is reproduced on the phosphor screen!

The terminal has two modes: normal alphanumeric mode and graphic mode. The screen has 1023 (x) by 780 (y) points that can be addressed. These are the screen points. With software, vectors can be drawn between any two points. It is also possible, with software, to define the screen coordinates to be any real coordinates. This is called windowing.

FIGURE 3 - SCREEN DIVISIONS OF THE TEXTRONIX TERMINAL. The screen is 1023 (x) by 780 (y).

3.2 WRITING A GRAPHICS PROGRAM

A program that draws a picture is a conventional program written in FORTRAN IV. In order to draw the pictures, the program must call a subroutine that will do the drawing on the terminal screen. These subroutines are found in a library of subroutines called PLOT10. The main types of subroutines that I use are of the form:

```
CALL INITT(IBAUD)
CALL TWINDO(MINX,MAXX,MINY,MAXY)
CALL DWINDO(XMIN,XMAX,YMIN,YMAX)
CALL MOVEA(X1,Y1)
CALL DRAWA(X2,Y2)
CALL FINITT(IX,IY)
```

INITT puts the terminal into the graphic mode, IBAUD is the (baud rate/10) that the terminal is running at. My terminal ran at 1200 baud rate, thus IBAUD was 120.

TWINDO AND DWINDO are subroutines that preform a windowing transformation. Twindo defines the screen coordinates of the part of the screen that will be used. MINX, MAXX, MINY, MAXY are the screen boundries of the window.

DWINDO defines the real coordinates that will be defined in the window. XMIN, XMAX, YMIN, YMAX are the real boundries of the window.

MOVEA moves the cursor to the point (X1,Y1). MOVEA does not cause the write beam to draw a line. DRAWA causes the write beam to draw a vector from the current cursor position to the point (X2,Y2).

FINITT dumps the line buffer, that is it dumps the last of the graphic commands. FINITT also puts the terminal back into normal alphanumeric mode and places the cursor at screen position (IX,IY).

These subroutines allow a graphic program to be structured (top down structured programing). An example of a FORTRAN fragment that would define the screen to be the cartesian coordinate system, (-2 < x < 2, -2 < y < 2), and draw the coordinate axes:

```
CALL INITT(120)
CALL TWINDOW(122,902,0,780)
CALL DWINDO(-2.0,2.0,-2.0,2.0)
CALL MOVEA(0.0,-2.0)
CALL DRAWA(0.0,2.0)
CALL MOVEA(-2.0,0.0)
CALL DRAWA(2.0,0.0)
CALL FINITT(0,780)
```

STOP END

These basic five subroutines are used to do all the graphics.

3.3 RUNNING A GRAPHICS PROGRAM

The computer that I chose for my senior project for was Cal Poly's CDC CYBER 174, known as the Local Cyber. As I said before, the graphics programs are standard FORTRAN IV programs. Because the PLOT10 library was called it was necessary to use the older FORTRAN IV instead of FORTRAN 77. Programs can be written with and without line numbers. To run a graphics program without line numbers on the Cyber the user types:

-, MOVIE, PROGRAM NAME, BATCH

To run a graphics program with line numbers on the Cyber the user types:

-, MOVIE, PROGRAM NAME

MOVIE is a procedure file written in Cyber Control Language that: allows the user to use the PLOT10 library; calls the FORTRAN compiler; disables the normal limits on computing time (a copy of MOVIE is in Appendix 1). It is necessary to disable the normal limits on computing time because the movie program typically runs for 4-6 hours

4 - THE HARDWARE

4.1 THE CAMERA

The camera used to photograph the screen of the graphics terminal was a SANYO SUPER-8 movie camera. This camera was checked out from Cal Poly's Audio Visual department. The SANYO movie camera has a single frame feature that allows the user to do animations. The camera shutter is triggered by electrically shorting the two terminals of a microjack input.

4.2 THE TRIGGER BOX

A trigger box was constructed to trigger the camera. This box consisted of:

- 1) A 12 V. and a 5 V. power supply.
- A sound operated switch.
- 3) A divide by two decimal counter and LED display.

The sound activated switch required 12 V. and the counter required 5 V. The sound activated switch was purchased from Radio Shack. It was necessary to divide by two, the number times the bell triggered the switch because, the sound activated switch had two states: open and closed. Thus, the first ring of the bell would cause the switch to close and trigger the camera; the second ring of the bell would set the switch to open, which would not trigger the camera. The LED display of the counter showed the number of Pictures taken, and not the number of times the terminal bell had rung.

I built three versions of the trigger box. The first was soldered on a proto board. This first version performed erratically. The second version was wire wrapped with what is called a 'just wrap' wire wrap tool. The just wrap tool uses unstripped wire that is wrapped around square pegs. The idea is that the square corners of the pegs will cut into the insulation, and form a gas tight bond to the wires. This did not work at all. The final version was built with a conventional stripped wire wrap tool. This final version worked very well. The schematic for the trigger box can be found in Appendix 2.

4.3 PROCESSING THE FILM

The film used to make the movies was Kodak Tri-x Super-8 movie film. It was necessary for me to do all the film processing for three reasons:

1) The film was not reversed to positive the way most movie film is; it was developed directly to negative. This was done to make the movie easier to view; the bright green lines of the graphics terminal would be dark black lines in the movie.

- 2) The film was developed with D-19 developer for 15 minutes. This is a high contrast developer that does not develop any grey tones; the film will only have black and white tones. This was done to eliminate any fogging from ambient light being emitted by the screen.
- 3) The film was over developed or 'pushed'. The screen of the graphics terminal was very dim; thus, it was necessary to overdeveloped the film to obtain greater detail.

The film was developed in a Arkay G-3 hand cranked movie processing tank.

5 - 3-D GRAPHICS

5.1 TRANSFORMATIONS

As explained earlier, the Tektronix graphics terminal can draw straight lines or vectors between any two points. In general an object to be drawn is represented as a set of points that vectors are to be drawn between. A 3-D object would be represented by a set of points:

$$P_n(x_n, y_n, z_n)$$

Transformations are used to manipulate the object in cartesian space. There are three kinds of geometrical transformations:

- 1) Translation
- 2) Scaling
- 3) Rotation

In addition to the geometrical transformations a fourth transformation is used to map the 3-D down to 2-D:

4) The perspective transformation

Each of the 3-D geometrical transformations can be represented in a uniform way by a 4×4 matrix. A point is transformed by operating on it with a transformation matrix.

$$[P'] = [P][A]$$
 (5-1)

$$[P'] = [x' y' z' 1]$$
 (5-2)

$$[P] = [x \ y \ z \ 1]$$
 (5-3)

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & 1 \end{bmatrix}$$
 (5-4)

5.2 TRANSLATION

Points in xyz space can be translated to new positions by adding a translation amount to the coordinates of the points. The form of the translation transformation:

$$x' = x + Dx$$

 $y' = y + Dy$
 $z' = z + Dz$ (5-6)

In matrix form:

$$[T] = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ Dx & Dy & Dz & 1 \end{vmatrix}$$
 (5-7)

5.3 SCALING

Scaling stretches or compresses the image along a particular axis with respect to the origin. The scaling transformations:

$$x' = xS_x$$

$$y' = yS_y$$

$$z' = zS_z$$
(5-8)

In matrix form:

$$[S] = \begin{bmatrix} S_{\mathbf{x}} & 0 & 0 & 0 \\ 0 & S_{\mathbf{y}} & 0 & 0 \\ 0 & 0 & S_{\mathbf{z}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5-9)

5.4 ROTATIONS

Most of us are familiar with right-handed coordinates. Unfortunately, the most logical coordinate system for 3-D graphics would be the left-handed system. This gives a natural interpretation of larger z values being into the screen of the terminal. The matrix form of the x, y, and z rotation operators in left handed coordinates:

FIGURE 4

5.5 THE PERSPECTIVE TRANSFORMATION

The perspective transformation is used to map the 3-D object coordinates down to 2-D screen coordinates. The perspective transformation projects the 3-D object onto the display screen. The projection of a 3-D object is defined by straight projection rays emanating from a center of projection, intersecting the projection plane (in this case the display screen), and terminating on each point in the 3-D object. The perspective transformation can be derived from similar triangles. The center of projection is set at the origin. x,y,z are the object coordinates. x_S and y_S are screen coordinates.

$$x_S = D(x/z)$$

$$y_S = D(y/z)$$
(5-13)

6 - MATRIX PROPERTIES

6.1 BASIC PROPERTIES

The basic geometrical operations in 3-D are represented as matricies. The task of manipulating a 3-D object is reduced to matrix multiplications. It is therefore, important to understand some of the basic properties of matrix multiplication. Given two matricies:

[A] with elements (a_{ij}) and size m x p

[B] with elements (b_{ij}) and size p x n

Their product is:

[C] with elements (c_{ij}) and size m x n

$$(c_{ij}) = a_{ik}b_{kj}$$

$$k = 1$$
(6-1)

In general matrix multiplication has the following properties:

[A][B] ≠ [B][A] COMMUTATIVE LAW

([A][B])[C] = [A]([B][C]) ASSOCIATIVE LAW

6.2 COMMUTING OPERATIONS

In general Matrix operators do not commute; however, several important cases of commuting operators can be found in 3-D graphics. Recall the basic operator matricies used in 3-D graphics:

[T] TRANSLATION

[S] SCALING

 $[R_e(e)]$ ROTATION e = x, y or z

Commuting operations:

$$[T_1][T_2] = [T_2][T_1]$$
 (6-2)

$$[S_1][S_2] = [S_2][S_1]$$
 (6-3)

$$[R_e(e)_1][R_e(e)_2] = [R_e(e)_2][R_e(e)_1]$$
 (6-4)

The commuting properties of these operators can be understood geometrically. A net translation is independent of the order the translations are performed. A net scaling is independent of the order the scalings are performed. Finally, a net rotation about a given axis is independent of the order that the rotations are performed.

6.3 NON-COMMUTING OPERATIONS

It is important to be aware of some of the non-commuting operations. Non-commuting operators:

$$[T][S] \neq [S][T]$$
 (6-5)

$$[T][R_e(\Theta)] \neq [R_e(\Theta)][T] \tag{6-6}$$

$$[S][R_{e}(\Theta)] \neq [R_{e}(\Theta)][S]$$
 (6-7)

The order of the operators is important in mixed operations because the scaling and rotation operators work with respect to the origin.

6.4 COMMON CONCATENATED OPERATIONS

Because of the origin dependence of the scaling and rotation operators the task of enlarging or rotating an object in space is not just a matter of operating on the object with a single operator. For example to rotate an object about its geometric center would require three operations: Translate it to the origin, rotate it about the origin and translate it back to its original position. Some common concatnated operations:

Given:

 $[T_O]$ is a translation operator that translates to the origin.

[T₀⁻¹] is a translation operator that translates back to the original position.

Rotate an object about its geometric center:

$$[T_0][R_e(e)][T_0^{-1}]$$
 (6-8)

Enlarge an object about its geometric center:

$$[T_0][S][T_0^{-1}]$$
 (6-9)

 $[T_0][S][R_e(e)][T_0^{-1}]$

Translate a tumbling object:

PAGE 17

(6-11)

 $[T_0][R_e(e)][T_0^{-1}][T]$

7 - GRAFIT

7.1 THE PROGRAM

GRAFIT is a FORTRAN subroutine that is used to create 3-D plots of single valued functions of two variables. A single valued function of two variables is of the form f(x,y). For every ordered pair (x,y) the function has a unique value. GRAFIT displays f(x,y) as an altitude above the xy plane. The resulting plots created by GRAFIT are surfaces. The user must provide GRAFIT with an array containing all of the z coordinates. GRAFIT removes any lines that are hidden from view or obscured. GRAFIT also allows the user to specify the view of the object by specifying three parameters R, THETA and PHI.

FIGURE 6 - TEST SURFACE. Test surface drawn with GRAFIT. Notice that hidden lines are removed.

7.2 3-D TRANSFORMATIONS USED IN GRAFIT

Grafit represents a special case of 3-D graphics. It was not necessary to have the program do the matrix transformations. The transformations were worked out by hand and defined in the program as functions. Initially the display screen represents the xy plane and the z coordinate is into the display. Next, the z axis rotation operator is applied to the coordinates; this rotates the xy plane of the surface through an angle THETA. Then, the x-axis rotation operator is applied; this tilts the surface through an angle PHI. Finally, the surface is translated forward and scaled so that it fits onto the screen. The operations:

The form of these transformations:

$$xs = D[xcos(e) - ysin(e)]/Q (7-2)$$

$$ys = D[xsin(e) + ycos(e)]/Q$$
 (7-3)

$$Q = [(xsin(e) + ycos(e)]sin(d) - zcos(d)$$
 (7-4)

Where

 x_s and y_s are coordinates on the screen. D is the distance between the viewer and the screen. e is the angle of rotation with respect to the Z axis. ϕ is the angle of rotation with respect to the X axis.

FIGURE 7 - OPERATIONS DONE BY GRAFIT ON A PLANE Initially the plane is scaled and translated to optimize the use of the screen. The plane is then rotated respect to the Z axis, through an angle THETA. Finally the plane is rotated with respect to the X axis through an angle PHI.

7.3 HIDDEN LINE REMOVAL

The algorithm chosen to remove hidden lines from the surfaces is known as Wright's algorithm. This algorithm is described in great detail in the reference 2. I looked at many hidden line algorithms, most involved clipping the hidden parts of vectors before the perspective projection onto the screen. For these algorithms, the criteria for visibility was often elusive. These methods were often brute force solutions to the hidden line problem. Wright's algorithm is very simple to implement and has virtually nothing to do with the three dimensional nature of the picture being drawn. This algorithm clips the hidden parts of vectors after the perspective transformation.

Wright's algorithm can be stated as this: Draw the picture from front to back, and don't draw where you have already drawn.

7.4 IMPLEMENTING WRIGHT'S ALGORITHM

The implementation of Wrights algorithm can be broken into several steps:

- 1) The surface is represented as a regular array of x and y points. Each P(x,y) has an altitude represented by the z coordinate. Thus the surface is like rubber graph paper.
- 2) The surface is broken into segments of constant x and constant y.
- The surface is drawn front to back using segments of constant x and constant y.
- 4) A visibility test is applied to the end points of each segment. If both ends are visible then the segment is drawn. If both ends are obscured then the segment is not drawn. If one end is visible and one end is obscured then the intersection between the surface and the segment is calculated and the segment is drawn from the intersection to the one visible point.

7.5 VISIBILITY TEST

The second half of the algorithm is: Don't draw where you have already drawn. This is achieved by maintaining 2 arrays, one of the upper bound of the surface and one of the lower bound of the surface, as a function of screen x coordinate. The visibility test is then used to test both end points of a segment to see if they lie between the lower bound and the upper bound.

FIGURE 8 - WRIGHT's ALGORITHM. First segments of constant x are drawn; then segments of constant y are draw. This process continues until the whole surface is generated.

FIGURE 9 - VISIBILITY TEST. Below each picture is the current upperbound for the surface. If one of the end points of the segment is below the upper bound then the intersection of the segment and the surface is calculated. The segment is only drawn to the intersection.

7.6 STEREO VIEWS

Since the user can specify the view of the surface it is very easy to generate stereo views of surfaces. Below is a stereo view generated by GRAFIT. This view is mirrored. It may be viewed by placing a mirror between the two views. One eye should look directly at the first picture, while the second eye should view the reflection of the second picture.

FIGURE 10 - STEREO VIEWS GENERATED BY GRAFIT.

FIGURE 11 - VIEWING THE STEREO VIEWS GENERATED BY GRAFIT.

8 - WAVE EQUATIONS

8.1 WAVE EQUATIONS

My Senior Project considered a special class of partial differential equations (PDE) known as wave equations. A wave equation is a linear second order PDE of the form:

$$\nabla^2 \mathbf{U} = \partial^2 \mathbf{U} / \partial t^2 \tag{8-1}$$

A set of conditions on the continuity of U and its derivatives are known as boundary conditions. The wave equation and boundary conditions constitute a boundary value problem. The solution of a boundary value problem is known as a wave function. A wave function is some function that will satisfy the wave equation and any boundary conditions that are imposed on the wave equation.

8.2 1-D WAVE EQUATION

The 1-D wave equation has the form:

$$\frac{\partial^2 y}{\partial x^2} = (1/v^2) \frac{\partial^2 y}{\partial t^2}$$
 (8-2)

The 1-D wave equation can be derived from Newton's second law, $\hat{F} = m\hat{a}$ applied to a small segment of the string. Consider the figure:

FIGIRE 12 - SEGMENT OF STRING USED TO DERIVE THE 1-D WAVE EQUATION. The string has a linear density (mass per unit length) of .

Several assumptions must be made to simplify the derivation of the wave equation. We must assume that the amplitude of the wave is small enough for o and o to be small. This gives several simplifications:

- 1) x is ~ the length of the segment.
- 2) sine ~ tane

Applying Newton's second law:

$$Tsin(\theta_1) - Tsin(\theta_2) = ma (8-3)$$

But for small angles sin(e) ~ tan(e):

$$T[tan(e_1) - tan(e_2)] = ma (8-4)$$

substituting $m = \mu \Delta x$ and $a = d^2y/dt^2$:

$$T[tan(\theta_1) - tan(\theta_2)] = (\mu \Delta x) d^2 y / dt^2$$
 (8-5)

But tan(e) = dy/dx:

$$T[(dy/dx)|_{x=0} - (dy/dx)|_{x=hx}] = (\mu h x)d^2y/dt^2$$
 (8-6)

Dividing through by Ax:

$$T[(dy/dx)|_{x=0} - (dy/dx)|_{x=\Delta x}]/\Delta x = d^2y/dt^2$$
 (8-7)

But: $\lim_{x\to 0} ([(dy/dx)|_{x=0} - (dy/dx)|_{x=\Delta x}]/\Delta x) = (d^2y/dx^2)$

Therefore:

$$\partial^2 \mathbf{y} / \partial \mathbf{x}^2 = (\mathcal{H} \mathbf{T}) \frac{\partial^2 \mathbf{y}}{\partial t^2} \tag{8-8}$$

Where the velocity of the media is:

$$v = (T/\mu)^{1/2}$$
 (8-9)

8.3 2-D WAVE EQUATION

The 2-D wave equation in cartesian coordinates has the form:

$$\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial z^2} = (\frac{1}{v^2})\frac{\partial^2 y}{\partial t^2}$$
 (8-10)

The 2-D wave equation can be similarly derived from Newton's second law, \vec{F} = $m\vec{a}$, applied to a small segment of a square membrane. Consider the figure:

FIGURE 13 - SEGMENT OF MEMBRANE USED TO DERIVE THE 2-D WAVE EQUATION. The membrane has a surface density (mass per unit area) of p. 2 Is the linear tension (tension per unit length).

Following the assumptions made for the 1-D equation, this equation may be derived in a similar fashion. The force contribution in the y direction due to the x direction, F_x :

$$(\mathcal{C}\Delta z)\sin(\Theta_1) - (\mathcal{C}\Delta z)\sin(\Theta_2) = F_x \tag{8-11}$$

But for small angles sin(e) ~ tan(e):

$$(\%z)[\tan(\theta_1) - \tan(\theta_2)] = F_x$$
 (8-12)

But $tan(\theta) = dy/dx$ and $F_X = ma_X = \rho \Delta x \Delta z(a_X)$:

$$(\mathcal{L}\Delta z)[(dy/dx)|_{x=0} - (dy/dx)|_{x=\Delta x}] = \mathcal{P}\Delta x \Delta z(a_x) \qquad (8-13)$$

Dividing through by PAxAz:

$$(\%)[(dy/dx)|_{x=0} - (dy/dx)|_{x=\Delta x}]/\Delta x = (a_x)$$
 (8-14)

But, $\lim_{x\to 0} ([(dy/dx)|_{x=0} - (dy/dx)|_{x=\Delta x}]/\Delta x) = (d^2y/dx^2)$

Therefore:

$$d^2y/dx^2 = (?/?)a_x \tag{8-15}$$

similarly:

$$d^2y/dz^2 = (9/\xi)a_z \qquad (8-16)$$

The total force on the membrane is the sum of the x and z contributions:

$$a_x + a_z = d^2y/dt^2$$
 (8-17)

Thus:

$$\frac{\partial^2 \mathbf{y}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{y}}{\partial \mathbf{z}^2} = (\frac{9}{6})\frac{\partial^2 \mathbf{y}}{\partial \mathbf{t}^2}$$
 (8–18)

Where the velocity of the media is:

$$\mathbf{v} = (^{\mathcal{C}}/_{\mathcal{P}})^{1/2} \tag{8-19}$$

8.4 SOLUTIONS TO WAVE EQUATIONS

Many techniques exist to solve PDEs. I chose two different techniques to solve the wave equation:

- D'Alemberts solution
- 2) Separation of variables

9 - MOVIE 1, D'ALEMBERT'S SOLUTION TO THE 1-D WAVE EQUATION

9.1 - D'ALEMBERT'S SOLUTION TO THE 1-D WAVE EQUATION

The most general solution to the 1-D wave equation is:

$$Y(x,t) = 1/2[f(x + vt) + f(x - vt)]$$
 (9-1)

Where f(x) is a function that represents the shape of the string at time t=0, and v is the wave velocity of the string. The string's motion can be thought of as the averaged superposition of two traveling waves moving in opposite directions. The story boards for the first movie visually demonstrate this.

FIGURE 14 - STORY BOARD FOR D'ALEMBERTS SOLUTION TO THE 1-D WAVE EQUATION. Frames 1 through 3: the movie shows a string in the second mode. Frames 4 through 6 the string stops vibrating and the screen is panned back from the string.

FIGURE 15 - Frames 6 through 12: we see that the string's motion is a superposition of two traveling waves moving in opposite directions.

10 - MOVIE 2, FOURIER SOLUTION TO TO THE 1-D WAVE EQUATION

10.1 SEPARATION OF VARIABLES

This is a powerful technique for solving PDEs. Separation of variables can be applied to the 1-D wave equation boundry value problem. Adopting a notion that is easier to type:

Ухх	=	$(1/v^2)y_t$	t	(10-1)
y_{XX} $y(0,t)$	=	0	Right end bound	(10-2)
y(c,t)		0	Left end bound	(10-3)
y(x,0)	=	f(x)	Initial shape of the string	(10-4)
$y_{+}(x,0)$			Initial velocity is zero	(10-5)

Where c is the length of the string and v is the wave velocity. We assume that y(x,t) is the product of a spatially dependent function and a temporally dependent function.

$$y(x,t) = X(x)T(t)$$
 (10-6)

Substituting this expression into the wave equation and separating variables gives:

$$(X''(x)/X(x)) = (T''(t)/v^2T(t)) = -$$
 (10-7)

Both sides are equal to a constant. The choice of -> is for the convevience of notation. The seperation can be completed to form two ODEs. These ODEs plus boundry conditions form a Sturm-Liouville Problem.

$$X''(x) + > X(x) = 0$$
 (10-8)
 $T''(t) + (> v^2)T(t) = 0$ (10-9)
 $X(0) = 0$ (10-10)
 $X(c) = 0$ (10-11)
 $T'(0) = 0$ (10-12)

-oo< > <oo Thus, three possible problems must be considered: \times < 0, \times = 0, and \times > 0. It can be shown that all cases except \times > 0 yield trivial solutions. Let \times = -b², The solutions to the ODEs are:

$$X(x) = A\sin(bx) + B\cos(bx)$$

$$T(t) = C\sin(bv^{2}t) + D\cos(bv^{2}t)$$

$$(10-13)$$

$$(10-14)$$

Applying the boundry conditions gives:

$$B = 0$$
 (10-15)
 $C = 0$ (10-16)
 $b = n^{\gamma / c}$ (10-17)

The numbers = $n^2 \chi^2/c^2$ are called eigenvalues.

Substituting the eigenvalues into the solutions gives a set of solutions known as eigenfunctions:

$$X_n(x) = A\sin(n\pi x/c) \qquad (10-18)$$

$$T_n(t) = D\cos(n\pi t/vc) \qquad (10-19)$$

Forming the product solution:

$$y_n(x,t) = b_n \sin(n\pi x/c)\cos(n\pi vt/c) \qquad (10-20)$$

A linear combination of solutions to a PDE is also a solution to the PDE. This is known as the principle of superposition. The next step is to sum up all of the eigen functions into a single solution:

$$y(x,t) = \sum_{n=1}^{\infty} b_n \sin(n \pi x/c) \cos(n \pi v t/c) \qquad (10-21)$$

If we apply the final condition regarding the initial shape of the string (10-4):

$$f(x) = \sum_{n=1}^{\infty} b_n \sin(n) x/c$$
 (10-22)

If we multiply both sides by $sin(m\pi x/c)$ and integrate over the length of the string.

$$\int_{0}^{c} f(x) \sin(m\pi x/c) dx = \sum_{n=1}^{\infty} b_{n} \int_{0}^{c} \sin(n\pi x/c) \sin(m\pi x/c) dx \quad (10-23)$$

But

$$\int_{0}^{c} \sin(n\pi x/c)\sin(m\pi x/c)dx = (c/2)\int_{nm} (10-24)$$

the only non-zero members of the series are when n=m. The coefficients bn can be given the values:

$$b_n = (2/c) \int_0^c f(x) \sin(n\pi/c) dx \quad (n = 1, 2, ...)$$
 (10-25)

The complete solution to the 1-D wave equation is thus:

$$y(x,t) = \sum_{n=1}^{\infty} b_n \sin(n\pi x/c)\cos(n\pi vt/c)$$
 (10-26)

$$y(x,t) = \sum_{n=1}^{\infty} b_n \sin(n\pi x/c)\cos(n\pi vt/c)$$
 (10-26)
$$b_n = (2/c) \int_0^c f(x)\sin(n\pi x/c)dx \quad (n = 1,2, ...)$$
 (10-27)

10.2 The Plucked String

The plucked string is a special case of the 1-D wave equation. general for a string of height h with a length c the initial shape is defined as:

$$f(x) = \begin{cases} 2h(x/c) & 0 < x < c/2 \\ 2h(1-(x/c)) & c/2 < x < c \end{cases}$$
 (10-28)

bn can be calculated from 10-16 as:

$$b_n = (4hc/n^2 \chi^2) \sin(n \psi^2)$$
 (10-29)

This gives us a complete solution:

$$y(x,t) = (4hc/\eta^2) \sum_{n=1}^{00} (1/n^2) \sin(n\pi x/c) \cos(n\pi vt/c)$$
 (10-30)

Let $k_n = (n \Re /c)$ and $w_n = (n \Re /c)$ we have:

$$y(x,t) = (4hc/\eta^2) \sum_{n=1}^{\infty} (1/n^2) \sin(k_n x) \cos(w_n t)$$
 (10-31)
$$w_n = vk_n$$
 (10-32)

$$w_n = vk_n \tag{10-32}$$

10.3 PHYSICAL INTERPRETATION

First this general solution to the wave is intended to model the behavior of a plucked string. The solution is a function of space and time. The equation for the solution has four distinct parts. constant in front of the summation scales the total solution for the plucked string. The sine terms are the spatial harmonics that describe the initial shape of the string. the sum of the spatial harmonics gives the complete shape of the string. the cosine terms are the temporal harmonics that describe the motion of the string. the sum of the temporal harmonics gives the complete motion of the The temporal harmonics are proportional to the frequencies that the string is vibrating with. The $(1/n^2)$ indicates that the contribution of the spatial and temporal terms each fall off like (1/n), the harmonic series.

The spatial part of the solution is fixed with respect to time. spatial part of the solution is modulated by the temporal part of the solution. wnis related to the frequencies that the string is vibrating at:

$$w_n = 2 \eta f_n \tag{10-33}$$

 k_{η} is related to the wavelength of a particular frequency:

$$k_n = 2\pi/2 \tag{10-34}$$

Note that the ratio of (w_n/k_n) is always the velocity. This says that each temporal harmonic of the solution has the same velocity. If this were not true then the media would be dispersive. We assumed initially that our media was non-dispersive, that is v was a constant in the 1-D wave equation. A real string is probably dispersive,

however this solution provides a close model for the behavior of the string.

FIGURE 16 - STORY BOARD FOR THE A MOVIE OF THE PLUCKED STRING. This movie demonstrates the time dependent Fourier solution to the plucked string.

$$y(x,t) = (4hc/\eta^2) \sum_{n=1}^{00} (1/n^2) \sin(k_n x) \cos(w_n t)$$

$$w_n = (n\hbar v/c)$$

$$k_n = (n\hbar v/c)$$

$$h = initial \ height \ of \ the \ string$$

$$v = the \ velocity \ of \ sound \ in \ the \ string$$

$$c = the \ length \ of \ the \ string$$

11 - MOVIE 3. FOURIER SOLUTION TO THE VIBRATING MEMBRANE

11.1 THE PROBLEM

Consider a flat membrane that is bound on all sides. The membrane is initially displaced with no initial velocity. The problem of the vibrating membrane can be stated as:

$$y_{xx} + y_{zz} = (1/v^2)y_{tt}$$
 (11-1)
 $y(0,0,t) = 0$ (11-2)
 $y(a,0,t) = 0$ (11-3)
 $y(0,b,t) = 0$ (11-4)
 $y(a,b,t) = 0$ (11-5)
 $y(x,z,0) = f(x,z)$ Initial shape (11-6)
 $y_t(x,z,0) = 0$ Initial velocity is zero (11-7)

11.2 SOLUTION

Using the technique of seperation of variables the solution to this problem can be found.

$$y(x,z,t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin(k_m x) \sin(k_n z) \cos(w_{mn} t)$$
 (11-8)

$$A_{mn} = (4/ab) \int_{0}^{a} \int_{0}^{b} f(x,z) \sin(k_{m}x) \sin(k_{n}x) dxdz \qquad (11-9)$$

$$w_{mn} = (k_n^2 + k_m^2)v$$
 (11 10)
 $k_m = (m/a)$ (11-11)
 $k_n = (n/a)$ (11-12)

11.3 THE MOVIE

Because of the enormous number of calculations that are needed to calculate a complete solution to the vibrating membrane problem, I chose to display several of the temporal harmonics in motion.

MODE 1,1

MODE 2,1

MODE 1.2

MODE 3,2

FIGURE 17 - SEVERAL MODES OF THE VIBRATING MEMBRANE

FIGURE 18 - STORY BOARD FOR A MOVIE OF THE VIBRATING SQUARE MEMBRANE. The membrane is in the 2,1 mode.

CONCLUSTON

The project was quite a large one. I think that perhaps I bit off more than I could chew. In any case, I learned a great deal from the project. Almost all of the project was home brew, I pretty much started from scratch. The 3-D surface program was used by Ashod Shamelian to display the results of his senior project. Also, I did a colloquium for the Physics department on what I had done.

I would like to take this opportunity to thank the Cal Poly Physics department for all that they gave me in my years as a student.

Listing of the Cyber Control Language (CCL) procedure file, MOVIE

```
.PROC,MOVIE,P,BATCH=FALSE/TRUE.
* GREGORY PAT SCANDALIS
.* MARCH 1,1983
.* THIS IA A CCL (CYBER CONTROL LANGUAGE PROCEDURE) THAT INTERFACES THE
.* GRAFIT PROGRAM WITH THE NOS OPERATING SYSTEM. THE PURPOSE OF THIS
.* PROCEDURE IS TO ATTACH THE GRAPHICS AND MATH LIBRARIES
* AND TO COMPILE AND EXECUTE THE PROGRAM.
                         THIS PROCEDURE WILL ALSO
* DISABLE THE NORMAL LIMITS ON CPU TIME. THIS WILL ALLOW THE MOVIE
* GENERATION PROGRAM TO RUN CONTINUOUSLY.
.* INVOCATION:
         -, MOVIE, PROGRAM NAME, BATCH
                         (NO LINE NUMBERS)
         -, MOVIE, PROGRAM NAME, BATCH
                        (WITH LINE NUMBERS)
.* LOOK TO SEE IF THE FILE EXISTS
$IFE, .NOT.FILE(P,AS), GET IT.
   $GET,P/NA
   $IFE, .NOT.FILE(P,AS), BAD NAME.
     $NOTE.+ +CANNOT FIND P IN THIS ACCOUNT!+ +
     $REVERT
   $ENDIF,BAD NAME.
$ENDIF.GET IT.
.*
* REWIND THE SOURCE CODE FILE
*
$REWIND,P.
.* GET THE CYBER SYSTEM INTERFACE LIBRARY
$IFE, .NOT.FILE(CSUBS,AS), GET IT 2.
  GET, CSUBS/UN=LETPLOO
$ENDIF, GET IT 2.
.* ATTACH THE GRAPHICS SUBROUTINES
$IFE, .NOT.FILE(TEKLBR,AS), GET IT 3.
  GET, CSUBS/UN=LIBRARY, NA
$ENDIF, GET IT 3.
.* ATTACH THE MATH SUBROUTINES
$IFE, .NOT.FILE(ZZZMATH,AS), GET IT 4.
  GET, CSUBS/UN=LBJZLOO.
$ENDIF, GET IT 4.
$RETURN,LGO,DOIT.
```

```
.* CALL THE FTN COMPILER (FORTRAN), USE EITHER THE BATCH OPTION
  OR THE NO BATCH OPTION.
$IFE, BATCH, CARD IMAGE.
  $FTN, I=P, L=O, REW.
$ELSE, CARD IMAGE.
  $FTN, I=P, L=O, REW, TS, SEQ.
$ENDIF, CARD IMAGE.
DISABLE THE TIME USE LIMITS
$SETTL.*.
$SETASL.*.
$SETJSL.*.
LOAD AND EXECUTE, NO MODULE GENERATED.
$LDSET,LIB=ZZZMATH/CSUBS/TEKLBR,PRESET=ZERO.
$LOAD(LGO)
$NOGO(DOIT)
DOIT.
$RETURN,LGO,DOIT.
MAKE THE NAMED FILE THE PRIMARY
$IFE, .NOT.FILE(P.PT), MAKE PRI.
  $PRIMARY,P.
$ENDIF, MAKE PRI.
$REVERT.
```

Schematic for the trigger box

Listing of GRAFIT

```
00660C
00670C
00680C
00710C
00720C
00730C
00740C
               THE SUBROUTINE GRAFIT DOES THE 3-D GRAPHICS
00750C
               THE DRIVER MUST PROVIDE THE COMMON ARRAYS:
00760C
               X(26,26),Y(26,26),Z(26,26).
                                      IN ADDITION
00770C
               THE FOLLOWING PARAMETERS ARE PASSED THROUGH
                         R- HOW FAR AWAY THE SURFACE IS
00780C
               GRAFIT:
00790C
                         THETA- THE AZIMUTHAL ANGLE
OOBOOD
                        PHI- THE COLATITUDE ANGLE
00B10C
                         D- THE DISTANCE OF THE OBSERVER
00820C
                         TO THE PROJECTION PLANE
00830C
00840C
00850C
COBBOC
00890C
00900C
00910
        SUBROUTINE GRAFIT(R.THETA.PHI.D.IFRAME)
00920
        DIMENSION XS(26,26), YS(26,26), DEPTH(4), HMAX(1024), HMIN(1024)
00930
        COMMON/POINT/X (26, 26), Y (26, 26), Z (26, 26)
00940+
             /DATA/XSC.YSC.COSTH.COSPHI.SINTH.SINPHI.RR.DD
00950+
             /HEIGHT/HMAX(1024).HMIN(1024)
00960
        DO 10 I=1.1024
00970
        HMAX(I) = -38.95
00980
        HMIN(I) = 38.95
00990
      10 CONTINUE
01000
        THETAA=THETA+0.017453
01010
        PHII=PHI+0.017453
01020
        COSTH=COS (THETAA)
01030
        COSPHI=COS (PHII)
01040
        SINTH=SIN(THETAA)
01050
        SINPHI=SIN(PHII)
01060
        RR=R
01070
        DD≕D
01080C
01090C
01100C
```

```
01120C
        TRANSFORM AND MAP THE 3-D DOWN TO 2-D
01130C
01140C
01160C
01170C
011B0C
        DO 400 I=1,26
01190
01200
        DO 300 J=1.26
01210
        CALL TRNSFM(X(I,J),Y(I,J),Z(I,J))
01220
        XS(I,J)=XSC
01230
        YS(I,J)=YSC
01240
     300 CONTINUE
     400 CONTINUE
01250
01260C
01270C
012B0C
01300C
        SET UP THE VIEWPORT
01310C
01320C
01340C
01350C
01360C
01370C
01380C
01390C
01410C
01420C
        IN ORDER TO HIDE THE OBSCURED LINES GRAFIT MUST
01430C
        DRAW FROM FRONT TO BACK.
                           THIS NEXT SECTION WILL
01440C
        LOCATE THE CLOSEST AXIS AND SET IFLAG.
01450C
        THE VALUE OF IFLAG IS USED TO IMPLEMENT A CASE CONSTRUCT
01460C
        IF IFLAG= 1
                    DO MODULE 1
01470C
014B0C
                2
                    DO MODULE 2
                    DO MODULE 3
                3
01490C
                    DO MODULE 4
01500C
01510C
        EACH MODULE IS DESIGNED TO DRAW THE CLOSEST PART OF
01520C
01530C
        OF THE SURFACE FIRST.
01540C
01560C
01570C
01580C
01590
        DEPTH(1)=ZZ(X(16,1),Y(16,1),Z(16,1))
        DEPTH(2)=ZZ(X(26,16),Y(26,16),Z(26,16))
01600
01610
        DEPTH(3)=ZZ(X(16,26),Y(16,26),Z(16,26))
        DEPTH(4)=ZZ(X(1,16),Y(1,16),Z(1,16))
01620
01630
        IFLAG=1
01640
        DO 500 I=2.4
01650
        IF(DEPTH(I).LT.DEPTH(IFLAG)) IFLAG=I
01660 500 CONTINUE
        BO TO(600,700,800,900), IFLAG
01670
```

```
016B0C
01690C
01700C
01720C
01730C
         MODULE 1 STARTS AT 600
01740C
01750C
01760C
01780C
01790C
01800C
        DO 630 J=1,26
01810 600
        CALL MOVEA(XS(1,J).YS(1,J))
01820
01830
        DO 610 I=2,26
        CALL PLOTEST(XS(I-1,J),YS(I-1,J),XS(I,J),YS(I,J))
01840
     610 CONTINUE
01850
        IF(J.EQ.26) GO TO 1000
01860
        DD 620 I=1,26
01870
        CALL MOVEA(XS(I,J),YS(I,J))
01880
        CALL PLOTEST (XS(I,J),YS(I,J),XS(I,J+1),YS(I,J+1))
01890
     620 CONTINUE
01900
     630 CONTINUE
01910
01920C
01930C
01940C
01960C
01970C
01980C
         MODULE 2 STARTS AT 700
01990C
02000C
02020C
02030C
02040C
02050
     700 I=26
02060
     705 CONTINUE
02070
        CALL MOVEA(XS(I,1),YS(I,1))
        DO 710 J=2,26
020B0
        CALL PLOTEST(XS(I,J-1),YS(I,J-1),XS(I,J),YS(I,J))
02090
     710 CONTINUE
02100
        IF(I.EQ.1) BD TD 1000
02110
        DO 720 J=1.26
02120
02130
        CALL MOVEA(XS(I,J),YS(I,J))
        CALL PLOTEST(XS(I,J),YS(I,J),XS(I-1,J),YS(I-1,J))
02140
     720 CONTINUE
02150
02160
         I=I-1
02170
        GO TO 705
02180C
```

```
02190C
02200C
02220C
02230C
         MODULE 3 STARTS AT 800
02240C
02250C
02260C
02280C
02290C
02300C
02310 800 J=26
02320 805 CONTINUE
02330
        CALL MOVEA (XS(26, J), YS(26, J))
02340
         I=50
02350 806 IF(I.EQ.O) 60 TO 810
02360
        CALL PLOTEST(XS(I+1.J),YS(I+1.J),XS(I,J),YS(I.J))
02370
        I=I-1
02380
        GO TO 806
02390 B10 CONTINUE
02400
        IF(J.EQ.1) BO TO 1000
02410
         I=26
02420 815 IF(I.EQ.O) 60 TO 820
02430
         CALL MOVEA(XS(I,J),YS(I,J))
02440
        CALL PLOTEST(XS(I,J),YS(I,J),XS(I,J-1),YS(I,J-1))
02450
         I = I - 1
02460
        60 TO 815
02470 820 CONTINUE
02480
        J=J-1
02490
        GO TO 805
02500C
02510C
```

```
02520C
02540C
02550C
02560C
          MODULE 4 STARTS AT 900
02570C
02580C
02600C
02610C
02620C
02630 900 DO 930 I=1.26
02640
         CALL MOVEA (XS(I,26), YS(I,26))
         J = 50
02650
      905 IF(J.EQ.O) GD TD 910
02660
         CALL PLOTEST (XS(I,J+1),YS(I,J+1),XS(I,J),YS(I,J))
02670
         J=J-1
02680
02690
         GO TO 905
02700 910 CONTINUE
         IF(I.EQ.26) BD TD 1000
02710
02720
         J=26
02730 915 IF(J.EQ.0) GO TO 920
         CALL MOVEA(XS(I,J),YS(I,J))
02740
         CALL PLOTEST(XS(I.J).YS(I.J).XS(I+1.J).YS(I+1.J))
02750
02760
         J=J-1
02770
         60 TO 915
027B0 920 CONTINUE
02790 930 CONTINUE
02800 1000 CONTINUE
02810
         IFRAMEE=IFRAME*2
         DO 1010 I=1, IFRAMEE
02820
         CALL BELL
02830
02840
         CALL MOVEA (-51.15.-51.15)
         CALL DASHA (-51.15.0.0.3)
02850
02860 1010 CONTINUE
         RETURN
02870
02880
         END
02890C
02900C
```

```
02910C
02940C
02950C
        SUBROUTINE THAT MAPS 3-D INTO 2-D
02960C
02970C
O3000C****************************
03010C
03020C
03030C
       SUBROUTINE TRNSFM(X,Y,Z)
03040
       COMMON/DATA/XSC, YSC, COSTH, COSPHI, SINTH, SINPHI, RR, DD
03050
       XP=X#COSTH-Y#SINTH
03060
       YINTER=X#SINTH+Y#CDSTH
03070
       YP=YINTER+COSPHI+Z+SINPHI
03080
       ZP=-Z*COSPHI+YINTER*SINPHI+RR
03090
       XSC=XP*DD/ZP
03100
       YSC=YP+DD/ZP
03110
       RETURN
03120
       END
03130
03140C
03150C
O3180C****************************
03190C
03200C
        FUNCTION USED TO FIND THE DEPTH OF A POINT
03210C
03220C
03230C
03240C***************************
03250C***************************
 03260C
 03270C
 03280C
        FUNCTION ZZ(X,Y,Z)
 03290
        COMMON/DATA/XSC, YSC, COSTH, COSPHI, SINTH, SINPHI, RR, DD
 03300
        ZZ=(X#SINTH+Y#COSTH) #SINPHI+RR-Z#COSPHI
 03310
        RETURN
 03320
        END
 03330
 03340C
 03350C
 03360C
```

```
03370C+***********************************
03390C
03400C
03410C
          THIS IS THE SUBROUTINE THAT HIDES THE OBSCURED LINES.
03420C
          THE METHOD IS KNOWN AS WRIGHT'S METHOD.
03430C
                                            A REFRENCE
          CAN BE FOUND IN IEEE PAPERS ON COMPUTERS ----
03440C
03450C
03460C
03470C
03500C
03510C
03520C
03530
         SUBROUTINE PLOTEST (XX1, YY1, XX2, YY2)
03540
         COMMON/HEIGHT/HMAX(1024), HMIN(1024)
03550+
         /XYINTER/XINTER, YINTER
03560
         X1 = XX1
03570
         X2=XX2
03580
         Y1=YY1
03590
         Y2=YY2
03600
         I1=INT(10.0+X1+512.5)
03610
         I2=INT(10.0*X2+512.5)
03620
         IVIS1=1
03630
         IVIS2=1
03640
         IF(Y1.LT.HMAX(I1).AND.Y1.GT.HMIN(I1)) IVIS1=0
03650
         IF(Y2.LT.HMAX(I2).AND.Y2.GT.HMIN(I2)) IVIS2=0
03660
         IF(Y1.EQ.HMAX(I1).OR.Y1.EQ.HMIN(I1)) IVIS1=2
03670
         IF(Y2.EQ.HMAX(I2).OR.Y2.EQ.HMIN(I2)) IVIS2=2
03680
         IF(IVIS1.EQ.1.AND.IVIS2.EQ.1) GO TO 100
03690
         IF(IVIS1.EQ.O.AND.IVIS2.EQ.O) BO TO 200
03700
         IF(IVIS1.EQ.1.AND.IVIS2.EQ.0) BO TO 300
03710
         IF(IVIS1.EQ.O.AND.IVIS2.EQ.1) BD TD 400
03720
         IF(IVIS1.EQ.O.AND.IVIS2.EQ.2) GD TD 400
03730
         IF(IVIS1.EQ.2.AND.IVIS2.EQ.0) BO TO 200
03740
         IF(IVIS1.EQ.1.AND.IVIS2.EQ.2) GO TO 100
03750
         IF(IVIS1.EQ.2.AND.IVIS2.EQ.1) BO TO 100
03760
         IF(IVIS1.EQ.2.AND.IVIS2.EQ.2) GD TO 100
03770C
```

```
03790C
       CASE 1, BOTH ENDPOINTS VISABLE, STARTS AT 100
03800C
03810C
03830C
03840 100 CALL DRAWA(X2,Y2)
       CALL UPDATE(X1,Y1,X2,Y2)
03850
       BD TD 500
03860
03B70C
03890C
        CASE 2, BOTH ENDPOINTS OBSCURED. STARTS AT 200
03900C
03910C
03930C
03940 200 CALL MOVEA(X2,Y2)
       GD TD 500
03950
03960C
03980C
        CASE 3, POINT 1 VISABLE AND POINT 2 OBSCURED, STARTS AT 300
03990C
04000C
04020C
04030 300 CALL SEARCH(X1, X2, IVIS1, X2, Y2, IVIS2)
       CALL DRAWA (XINTER, YINTER)
04040
       CALL MOVEA (X2.Y2)
04050
       CALL UPDATE (X1, Y1, XINTER, YINTER)
04060
       80 TO 500
04070
040B0C
040<del>90C**************************</del>
04100C
        CASE 4, POINT 1 OBSCURED AND POINT 2 VISABLE, STARTS AT 400
04110C
04120C
04130C***********************
04140C
04150 400 CALL SEARCH(X1,Y1,IVIS1,X2,Y2,IVIS2)
04160
       CALL MOVEA (XINTER, YINTER)
       CALL DRAWA (X2, Y2)
04170
       CALL UPDATE (XINTER, YINTER, X2, Y2)
04180
04190C
04200C
04210C
04220 500 RETURN
04230
        END
04240C
04250C
04260C
```

```
04290C
04300C
04310C
04320C
         THIS IS THE SUBROUTINE USED TO UPDATE THE HMIN AND HMAX
04330C
04340C
04350C
04380C
04390C
04400C
04410
        SUBROUTINE UPDATE (X1, Y1, X2, Y2)
        COMMON/HEIGHT/HMAX (1024), HMIN (1024)
04420
04430
        I1=INT(10.0+X1+512.5)
04440
        I2=INT(10.0+X2+512.5)
04450
        IF(Y1.GT.HMAX(I1)) HMAX(I1)=Y1
04460
        IF(Y1.LT.HMIN(I1)) HMIN(I1)=Y1
04470
        IF(Y2.GT.HMAX(I2)) HMAX(I2)=Y2
        IF(Y2.LT.HMIN(I2)) HMIN(I2)=Y2
04480
04490
        IF(X1.EQ.X2) 80 TO 40
04500
        IF(I1.GT.I2) GD TD 10
04510
        60 TO 20
04520
      10 ITEMP=I1
04530
        I1=I2
04540
        I2=ITEMP
04550
      20 CONTINUE
04560
        IDELTA=I2-I1
04570
        IF (IDELTA.LE.1) GO TO 40
04580
        I1=I1+1
04590
        I2=I2-1
04600
        DO 30 I=I1.I2
04610
        XI=FLOAT(I)
04620
        Y=((Y2-Y1)/(X2-X1))+((XI-512.5)+.1-X1)+Y1
04630
        IF(Y.GT.HMAX(I)) HMAX(I)=Y
04640
        IF(Y.LT.HMIN(I)) HMIN(I)=Y
04650
      30 CONTINUE
04660
    40 RETURN
04670
        END
04680C
24690C
4700C
```

```
04730C
 04740C
 04750C
           THIS SUBROUTINE FINDS THE INTERSECTION POINT
 04760C
 04770C
           WITH A BINARY SEARCH
 04780C
04790C
 04800C
04830C
O4B4OC
04850C
          SUBROUTINE SEARCH(XX1, YY1, IVIS1, XX2, YY2, IVIS2)
04860
04870
          COMMON/HEIGHT/HMAX(1024), HMIN(1024)
04880+
          /XYINTER/XINTER, YINTER
04B90
          X1=XX1
04900
          Y1=YY1
04910
          X2=XX2
          Y2=YY2
04920
04930
          XO=XX1
04940
          YO=YY1
04950
          IF(X1.EQ.X2) 80 TO 6
04960
          GO TO 7
04970
          XINTER=X1
04980
           YINTER=Y2
04990
          GO TO 50
05000
       7 CONTINUE
05010
          SLOPE= (Y2-Y1) / (X2-X1)
05020
          I1=INT(10.0+X1+512.5)
05030
          I2=INT(10.0+X2+512.5)
05040
       10 I3=(I2-I1)/2+I1
05050
          XI3=FLOAT(I3)
05060
          X3=(XI3-512.5)/10.0
05070
          Y3= (X3-X0) #SLOPE+Y0
05080
          IVIS3=1
          IF(Y3.LT.HMAX(I3).AND.Y3.GT.HMIN(I3))
05090
                                            IVIS3=0
05100
          IF(IVIS1.EQ.IVIS3) GO TO 20
05110
          IVIS2=IVIS3
05120
          12=13
05130
          Y2=Y3
05140
          GO TO 30
05150
       20
          IVIS1=IVIS3
05160
          I1=I3
05170
         Y1=Y3
05180
       30 CONTINUE
05190
         IDELTA=IABS(I1-I2)
05200
         IF (IDELTA.NE.1) GO TO 10
05210
         IF (IVIS1.EQ.0) 60 TO 40
05220
         XI1=FLOAT(I1)
05230
         XINTER=(XI1-512.5)/10.0
05240
         YINTER=Y1
05250
         60 TO 50
05260
       40 XI2=FLOAT(I2)
05270
         XINTER=(XI2-512.5)/10.0
05280
         YINTER=Y2
05290
       50 RETURN
05300
         END
05310C
```

```
05320C
05330C
05350C
053A0C
05370C
         SUBROUTINE USED TO DRAW THE BORDER AND TO INSERT A DELAY
05380C
05390C
05400C
05410C
05430C
05440C
05450C
05460
        SUBROUTINE BORDER
         CALL MOVEA (-51.15, -38.95)
05470
         CALL DRAWA (-51.15.38.95)
05480
         CALL DRAWA (51.15.38.95)
05490
05500
         CALL DRAWA (51.15.-38.95)
         CALL DRAWA (-51.15, -38.95)
05510
05520
         RETURN
         END
05530
```

Listing of the program used to generate Movie 1, D'alemberts Solution

```
0020C
10030C
10040C
         GREGORY PAT SCANDALIS- SENIOR PROJECT/COMPUTER MODELING
0050C
         DESCRIPTION: THIS PROGRAM IS THE FIRST IN A SERIES OF
20400
         COMPUTER MODELS BASED ON PHYSICS. THIS PROGRAM MODELS A
         VIBRATING STRING. THIS PROGRAM DOES NOT SOLVE THE "WAVE
0070C
         EQUATION". THIS PROGRAM GENERATES A " MOVIE " FRAME BY FRAME
10080C
0090C
         ON A TEXTRONIX GRAPHICS TERMINAL. THESE INDIVIDUAL FRAMES
1000C
         OF THE STRING'S MOTION WILL BE PHOTOGRAPHED BY A FRAME
0110C
         CAMERA FRAME BY FRAME. THE PROGRAM USES D'ALEMBERTS SOLUTION
O1200
         TO THE WAVE EQUATION:
01300
0140C
0150C
0160C
0170C
         THIS SOLUTION REPRESENTS THE SUM OF TWO WAVES TRAVELING IN
0180C
         OPPOSITE DIRECTIONS.
0190C
0210C
0220
         PROGRAM STRING(INPUT, OUTPUT, TAPE61, TAPE62, TAPE5=INPUT,
0230+
          TAPE6=OUTPUT)
          COMMON PI.V.XL,N
0240
0250C
·0260C
           INPUT THE VELOCITY, HARMONIC NUMBER AND THE RUN TIME
0270C
0280
         PRINT*." INPUT N. THE HARMONIC NUMBER"
0290
         READ*.N
0300
         PRINT*. "ENTER THE INITIAL NUMBER OF STILL SECONDS"
         READ*.JO
0310
0320
         J1=J0+18
0330
         J0=J0#36
0340
         PRINT*, "INPUT THE PERIOD IN REAL TIME"
0350
         READ*, PER
0360
         V=275./(N*PER)
         PRINT+." THE VELOCITY IS : ".V
0361
         PRINT*." INPUT ITMAX. THE NUMBER OF SECONDS GENERATED"
0370
0380
         READ*, ITMAX
0390
         IQUIT=ITMAX*18+J1
0400
         PRINT*. "BETTER QUIT BEFORE THE FRAME COUNTER READS ". IQUIT
0410
         ITMAX=ITMAX+6
0420
         PRINT*. "ENTER THE INITIAL TIME"
0430
         READ*, TO
0450C
0460C
           SET INITIAL VALUES AND CONSTANTS
0470C
0480
         PI=3.1415926
0490
         T=TO
0500
         XL=900.0
0510C
```

```
~~~~~
                      VEDE 19 EHPU LIMIE
00530C
           DO 10 I=1, ITMAX
00540
00550
            x=0.0
00560C
00570C
              INITIALIZE THE GRAPHICS AREA. DRAW THE BOX
00580C
00590
           CALL INITT(120)
           CALL DWINDG(0.0,900.0,-1.1,1.1)
00600
           CALL TWINDO (62, 962, 200, 717)
00610
           CALL MOVEA (0.0,-1.1)
00620
00630
           CALL DRAWA (0.0,1.1)
00640
           CALL DRAWA (900.0.1.1)
           CALL DRAWA (900.0,-1.1)
00650
           CALL DRAWA (0.0,-1.1)
00660
           CALL MOVEA (0.0,0.0)
00670
           CALL DASHA (900.0,0.0,3)
00680
006900
              INITIALIZE THE CURSOR
00700C
00710C
00720
           Y=F(X,T)
00730
           CALL MOVEA(X,Y)
00740C
00750C
               CALCULATE AND PLOT A FRAME OF THE STRING
00760C
00770
           DO 20 J=1,450
00780
               X=X+2
00790
               Y=F(X.T)
00800
               CALL DRAWA (X.Y)
       20
           CONTINUE
00810
00820
           T=T+1
00830
           JJ=6
00840
           IF(T.EQ.1.0) JJ=J0
00850
           DO 11 II=1.JJ
00860
            CALL BELL
00870
           CALL MOVEA (0.0, -0.75)
00880
           CALL DASHA(0.0,0.0,3)
00890
        11 CONTINUE
00900
       10 CONTINUE
00901
           CALL FINITT(0.0)
00910
           STOP
00920
           END
00930C
00940
           FUNCTION F(X,T)
00950
            COMMON PI, V, XL, N
00960
           F=(.5)+(SIN((N+PI+(X+V+T))/XL)+SIN((N+PI+(X-V+T))/XL))
00970
           RETURN
00980
           END
```

Listing of the program used to generate Movie 2, Fourier Solution

```
J020C
00030C
          GREGORY PAT SCANDALIS- SENIOR PROJECT/COMPUTER MODELING
00040C
                       THIS PROGRAM IS THE FIRST IN A SERIES OF
          DESCRIPTION:
00050C
          COMPUTER MODELS BASED ON PHYSICS. THIS PROGRAM MODELS A
00040C
          VIBRATING STRING. THIS PROGRAM DOES NOT SOLVE THE "WAVE
00070C
          EQUATION". THIS PROGRAM GENERATES A " MOVIE " FRAME BY FRAME
000B0C
          ON A TEXTRONIX GRAPHICS TERMINAL. THESE INDIVIDUAL FRAMES
00090C
          OF THE STRING'S MOTION WILL BE PHOTOGRAPHED BY A FRAME
00100C
          CAMERA FRAME BY FRAME. THE PROGRAM USES D'ALEMBERTS SOLUTION
00110C
          TO THE WAVE EQUATION:
00120C
00130C
00140C
00150C
00160C
          THIS SOLUTION REPRESENTS THE SUM OF TWO WAVES TRAVELING IN
00170C
          OPPOSITE DIRECTIONS.
00180C
00190C
00210C
          PROGRAM STRING (INPUT, OUTPUT, TAPE61, TAPE62, TAPE5=INPUT,
00220
           TAPE6=BUTPUT)
00230+
           COMMON PI, V, XL, N, H
00240
00250C
             INPUT THE VELOCITY, HARMONIC NUMBER AND THE RUN TIME
00260C
00270C
          PRINT*," INPUT THE STRING VELOCITY"
00280
           READ+, V
00290
           PRINT*." INPUT N. THE HARMONIC NUMBER"
00300
           READ*.N
00310
           PRINT*, " INPUT ITMAX. THE NUMBER OF FRAMES GENERATED"
00320
           READ+, ITMAX
00330
           PRINT*, "ENTER THE INITIAL HEIGHT OF THE STRING"
00340
00350
           READ*.H
           PRINT*, "ENTER THE INITIAL NUMBER OF STILL FRAMES"
00360
00370
           READ*, JO
00371
           J0=J0+2
           PRINT*, "ENTER THE INITIAL TIME"
003B0
           READ*.TO
00390
00400C
             SET INITIAL VALUES AND CONSTANTS
00410C
00420C
00430
           PI=3.1415926
00440
           T=TO
 00450
           XL=900.0
 00460C
            THIS "DO" RESETS EACH FRAME
 00470C
 004B0C
           DO 10 I=1, ITMAX
 00490
            X=0.0
 00500
```

00510C

```
00520C
               INITIALIZE THE BRAPHICS AREA, DRAW THE BOX
  00530C
  00540
             CALL INITT(120)
  00550
             CALL DWINDO(0.0,900.0,-1.1,1.1)
  00560
             CALL TWINDO (62, 962, 200, 717)
  00570
             CALL MOVEA (0.0, -1.1)
  00580
             CALL DRAWA (0.0,1.1)
 00590
             CALL DRAWA (900.0, 1.1)
             CALL DRAWA (900.0, -1.1)
 00600
 00610
             CALL DRAWA (0.0, -1.1)
 00620
             CALL MOVEA (0.0,0.0)
 00630
             CALL DASHA (900.0,0.0,3)
 00640C
 00650C
               INITIALIZE THE CURSOR
 309900
 00670
             Y=F(X,T)
 00480
            CALL MOVEA(X,Y)
 00690C
 00700C
                CALCULATE AND PLOT A FRAME OF THE STRING
 00710C
 00720
            DO 20 J=1,450
 00730
               X=X+2
 00740
                Y=F(X,T)
 00750
               CALL DRAWA (X.Y)
 00760 20 CONTINUE
 00770
            T=T+1
 00780
            JJ=6
 00790
            IF(T.EQ.1.0) JJ=J0
 00800
            DO 11 II=1,JJ
 00810
             CALL BELL
 00820
            CALL MOVEA(0.0,-0.75)
00830
            CALL DASHA (0.0,0.0,3)
00840
       11 CONTINUE
00850
        10 CONTINUE
00851
            CALL FINITT(0,0)
00860
            STOP
00870
            END
00880C
00890
           FUNCTION F(X.T)
00900
            COMMON PI, V, XL, N, H
00910
           P=0.0
00920
           PARTSM=0.0
00930
           DO 10 I=1.N
00940
           XI=FLOAT(I)
00950
           AN=8.0*H*SIN(XI*PI/2.0)/(XI**2.0)*(PI**2.0)
00960
           TAU=COS(XI*PI*V*T/XL)
00970
           XLAM=SIN(XI+PI+X/XL)
00980
           P=AN+TAU+XLAM
00990
           PARTSM=PARTSM+P
01000 10 CONTINUE
01010
           F=PARTSM
01020
           RETURN
01030
           END
```

Listing of the program used to generate Movie 3, Modes of the Vibrating Membrane

```
00020C
00030C
00040C
               GREGORY PAT SCANDALIS
00050C
00060C
               SENIOR PROJECT
00070C
               PHYSICS
COORC
               COMPUTER GENERATED MOVIES W/3-D GRAPHICS
00090C
00100C
00120C
00130C
00140C
                 THE FIRST PART OF THE PROGRAM IS A DRIVER TO
00150C
                 GENERATE THE DATA FOR THE TEST SURFACE.
00160C
00170C
001B0C
00190C
00220C
00230C
         PROGRAM PATPLOT (INPUT, OUTPUT, TAPE61, TAPE62, TAPE5=INPUT,
00240
00250+
                    TAPE6=DUTPUT)
00260
         DIMENSION X (26, 26), Y (26, 26), Z (26, 26)
         COMMON/POINT/X(26,26),Y(26,26),Z(26,26)
00270
00280C
00290C
          INITIALIZE THE ARRAYS
00300C
00310
         DO 20 I=1,26
00320
         DO 10 J=1,26
00330
         X(I,J)=I-16.
00340
         Y(I.J)=J-16.
00350
     10
         CONTINUE
00360 20
         CONTINUE
            INITIAL DATA IS INPUT
00370C
003800
00390
         PRINT*, "ENTER R, THETA, PHI, D, IFRAME"
00400
         READ*, R, THETA, PHI, D, IFRAME
         XNX=2.0
00410
         YNY=1.0
00420
00430 15 T=0.0
         DO 3000 K=1,140
00440
         DO 50 I=1,26
00450
         DO 60 J=1,26
00460
00470
         A=SIN((I-1.0)*XNX*.12566)
004B0
         B=SIN((J-1.0)*YNY*.12566)
00490
         C=CDS(((XNX**2+YNY**2)**.5)*T*.17444)
00500
         Z(I,J)=8.0*A*B*C
00510
     60 CONTINUE
     50 CONTINUE
00520
00530
         T=T+1.0
00540
         CALL INITT(120)
00550
         CALL DWINDO(-51.15,51.15,-38.95,38.95)
00560
         CALL TWINDO(0,1023,0,780)
00570
         CALL BORDER
00580
         CALL GRAFIT (R. THETA, PHI.D. IFRAME)
00590 3000
         CONTINUE
00600
         XNX=XNX+1.0
00610
         YNY=YNY+1.0
         IF(XNX.EQ.3.0) 80 TO 15
00620
00630
         CALL FINITT(0,0)
00640
         STOP
00650
         END
```

BIBLIOGRAPHY

- Brown, J. W., Churchill R. V., <u>Fourier series and Boundry Value Problems</u>, McGraw-Hill (1941).
- Frey, A.R., Kinsler, L.E., <u>Fundementals of Acoustics</u>, John Wiley & Sons (1962).
- Myint-U, Tyn, Partial Differential Equations of Mathematical Physics, North Holland (1973).
- Newman, W. M., Sproull, R. F., <u>Principles of Interactive Computer</u> <u>Graphics</u>, McGraw-Hill (1979).
- Tipler, P. A., Physics vol. 2, Worth Publishers (1978).
- Foley, J. D., Van Dam, A., <u>Fundamentals of Interactive Computer</u> <u>Graphics</u>, Addison-Wesley Publishing Company (1982).
- Wright, T. J., A Two Space Solution to the Hidden Line Problem for Plotting Functions of Two Variables, IEEE Transactions on Computers c-22, no. 1, January 1973.