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1 - INTRODUCTION

1.1 THE COMPUTER

Perhaps no other tool of the Twentieth Century will change as many
peoples lives as the 'computer'. The computer is a computational tool
capable of doing hundreds of hours of tedlous work iIn seconds; capable
of making a bookeepers nightmare manageable; capable of turning a
mildly complicated mathematical problem into several pounds of paper!
Computer- Godsend or beast?

Two decades ago, computers, in particular computer output, began to
take on new and exciting forms. Computers were used to do complicated
tasks on spacecrafts; musicilans at Columbia University used computers
to control another new tool, the electronic synthesizer, creating
avant-garde new music; the word 'digital' became a household word; the
'word processor' or text editor made the composition of written
material more accessible.

One of the most exciting of the new output media is called 'Computer
Graphics', a development that had to wait for today's computer with its
rapid graphic capability. This media takes on a many diverse fornms,
from the simplest video game, to fantastically detailed movies used for
entertainment and to verify complex scientific models. Certainly, a
3-D plot of the temperature distribution on a square plate Gtells the
viewer a great deal more than several pounds of numerical output.

One of the fantastic things about studying Physics in the last few
decades 1s that one no longer needs to be a Gauss or a Fourier;
spending days doing tedious calculations, struggling to gain an insight
into higher mathematics. Not to belittle the heuristic value of doing
hand calculations, but no amount of tedious number crunching replaces
the 'intuitive' feeling one gets from a picture. With the aid of
computing machines, it 1is now possible to graphically explore
mathematical properties of equations and models in Physics.

1.2 COMPUTER GRAPHICS AND PHISICS

How do computer generated movies relate to Physics. Physics seeks
to model what we see in nature with mathematics. Many times I've
wanted to graphically verify the validity of a complex mathematical
equation. I have felt that a picture would greatly inprove my
understanding of such an equation.

I am reminded of a interesting story dealing with a man, blind from
birth, who had his sight restored by modern surgery. When he was blind
he had learned to operate a metal lathe. After his sight was restored
he told friends that he wished to see what a lathe looked like. They
took him to a local factory to see a lathe. When showed the lathe, he
Was very disappointed, and insisted he could not see it. He asked if
he could feel 1it. After exploring, for several minutes, he announced
that now he could see it. Apparently he had to see the lathe in
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familiar terms, by touch, before he could understand it in unfamiliar
terms, sight.

Perhaps with much wasted time and frustration the cured blind man
could have 'seen' the lathe, but by allowing him to feel the lathe, the
task became not one of frustration, but one of enjoyable enlightenment.
I share our blind/sighted man's plight. I want to 'feel' the
mathematics that I have studied. By analogy to our blind/sighted
friend, I think that 'feeling' what I am learning would furn a
frustrating tedious task into an enjoyable and enlighting experience.
As elegant as an equation may be, it 1s worthless without a deep
understanding of what that equation says. How does one achieve a
deeper understanding?

The present method requires that the student wrestle with some
problems from some new conceptual material, until comnections are made
to more familiar concepts. To augment this, the students are often
given an opportunity, in the lab, to play with the concepts they are
learning in the classroom. But in the lab it is often difficult to
distinguish ideal point particles, gasses, frictionless surfaces, etc.
etc... , from the real world (Physics does model the real world after
all 111!)

Like our blind/sighted man, students must be able to 'feel' what
they are doing first. This notion is not new, but what is relatively
new is the idea of using computer graphics as a tool to graphically
explore the realm of Physics.

As an example consider the Fourier series. I was frustrated by the
mechanistic level on which I first understood, eveness, oddness, half
range expansions, etc.,etc... What I did not wunderstand I simply
memorized. The expected occured, I promptly forgot what I memorized.
Then, I started this senior project. One of my first programs allowed
me to explore the Fourier series. I then spent an intense and
enjoyable session playing with Fourier series. Of course, I could have
done the same exploration with graph paper and a caleculator, but it
would have required more time and resolve than I possess. Computer
graphics afforded me a very gratifying learning experience.

It should be noted, that exploring the Fourier series with a
computer is not a replacement for learning the Fourier equations and
their properties. Computer graphics simply gives one another view of
the Fourier series. Both methods of learning are complementary.

The Physicist of days gone by had mathematics as his main 'hand
tocol'. The Physicist of the Twentieth Century now has within reach a
new 'power tool', the computer. This tool has had a major impact on
the commercial and scientific communities. so why is it given such a
minor role in the educational community? Hopefully my senior project
will play at least some small role in changing that.

1) The Brain, Richard M. Restak,M.D. chapter 6.
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2 - THE PROJECT
2.1 THE PROJECT

The title of my senior project is 'Computer Generated Movies and
Physies'. I created computer generated movies of vibrating systenms,
that I hope will provide the viewer with insights not experlenced
before. The programs display four parameters, x,y,z and t. The movie
format allows the display of time dependent solutions to various
problems! The project was interdisciplinary, it involved concepts from
Physics, Mathematics, Computer Science, Electronics and Photography.

COMPUTER SCIENCE - Progrenms to ELECTRONICS AND PHOTOGRRAPHY -
creale -0 and 3-0 plats. Sysler to creste compuler
genersled movies.

PHTSICS AND MATHAMATICE - Bolh
these used to disploy solullons
Lo #-0 and 3-0 wibreling syslems.

FIGURE 1 - STRUCTURE OF THE SENIOR PROJECT. The project was
interdisiplinary, drawing from many different flelds.

Considering large amount of computer time that is required to
generate a movie, only a few movies were made. The following are the
situations that were generated:

1) D'Alembert solution to the 1-D wave equation,
2) Fourier solution to the plucked string.
3} Solution to the vibrating square membrane.

2.2 HOW A MOVIE IS MADE

The method of creating a computer generated movie 1is simple.
Computer pictures are drawn on a special terminal known as a graphics
terminal. Once a picture 1s generated it 1is known as a 'frame'. This
frame is then photographed off the screen with a movie camera set up to
photograph single frames. To conserve computing time three pictures
are taken of each frame.



PAGE 4§

The camera 1s a movie camera that can be checked out from Cal Poly
A.V. This camera can be triggered by simply closing a switch. I could
let the computer generate a frame and then trigger the camera by hand,
however this would be very tedious. An alternative is to trigger the
camera with a sound operated switch. After the computer finishes
generating a frame, a command in the program rings the bell in the
terminal. The bell sets off the sound operated switch which in turn
triggers the camera.

Finally when all the frames are taken and the film is processed the
resulting movie is a computer generated movie. Incidentaly, 1 second
of the movie 1is composed of 18 frames. This means that a 3.5 minute
movie is about 3600 frames. It takes about 1 minute to draw each
frame, so 3.5 minute of movie is about 60 hours of computer timel

2.3 A FEW WORDS ABOUT THIS WRITE UP

This paper has been written in a sort of users gulde style. I
intend for this paper to provide a sort of reference on how to do
graphics at Cal Poly, and how to write the programs used in the
project. I have Included all source code for the programs.
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3 - GRAPHICS
3.1 THE TERMINAL

As I said earlier, the graphics are done on a special computer
terminal known as a Graphics Terminal. This is a special terminal that
allows the user to draw pictures. The terminal that I used was a
TEKTRONIX 4006-M. The TEKTRONIX terminal has a direct-view storage
tube (DVST) in place of a standard cathode-ray tube (CRT). This tube
is much like the tubes used in a storage oscllloscope. Lines written
on the DVST will persist for a long time. It is not possible to
selectively erase parts of the DVST.

The type of graphics done on the TEKTRONIX terminal are known as
'vector graphics'. On the TEKTRONIX terminal it is possible to draw
very straight lines or 'vectors' between two points. This is different
from most 'raster scan' displays in which lines are created from
discrete elements known as pixels.

The DVST, like a CRT, has a writing beam electron gun and a phosphor
coated screen 1in addition it has a flood electron gun. The writing
beam gun does not write directly on the phosphor, but on a fine mesh
dielectric screen known as the storage grid. The storage grid is
mounted between the writing beam gun and the phosphor screen.
Initially the storage grid is uniformly negatively charged. High speed
electrons strike this grid and dislodge some of the surface electrons.
These electrons are captured by the positively charged collector. This
leaves a net positive charge on the storage grid! Because the storage
grid is a dielectric, other electrons cannot migrate, and a positive
charged‘Pattern is stored.

Flood Electrons

Fload Gun

uy

crean

B 1Y

Uriting éiun Lun i
Wrillng Beam
. Starage Orid

Collecltor

Direct View Storage Tube

FIGURE 2
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Independent of the writing gun is the flood gun. This gun uniformly
covers (floods) the storage grid with low velocity electrons.
Electrons approaching a positively charged region of the grid will pass
through and strike the phosphor screen, causing light emission.
Electrons approaching other parts of the of the grid will be repelled
and will not pass through. Thus, the charge pattern stored on the grid
is reproduced on the phosphor screen!

The terminal has two modes: normal alphanumeric mode and graphic
mode. The screen has 1023 (x) by 780 (y) points that can be addressed.
These are the screen points. With software, vectors can be drawn
between any two points. It is also possible, with software, to define
the screen coordinates to be any real coordinates. This is called
windowing.

(@, 780) (1823, 780)

(0, 0} (1023, @)

FIGURE 3 - SCREEN DIVISIONS OF THE TEKTRONIX TERMINAL. The screen is
1023 (x) by T80 (y).

3.2 WRITING A GRAPHICS PROGRAM

A program that draws a picture 1is a conventional program written in
FORTRAN IV. In order to draw the pictures, the program must call a
subroutine that will do the drawing on the terminal screen. These
subroutines are found in a library of subroutines called PLOT10. The
main types of subroutines that I use are of the form:
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CALL INITT(IBAUD)

CALL TWINDO(MINX,MAXX ,MINY,KMAXY)
CALL DWINDO(XMIN,XMAX,YMIN,YMAX)
CALL MOVEA(X1,Y1)

CALL DRAWA(X2,Y2)

CALL FINITT(IX,IY)

INITT puts the terminal into the graphic mode, IBAUD is the (baud
rate/10) that the terminal is running at. My terminal ran at 1200 baud
rate, thus IBAUD was 120.

TWINDO AND DWINDO are subroutines that preform a  windowing
transformation. Twindo defines the screen coordinates of the part of
the screen that will be used. MINX, MAXX, MINY, MAXY are the screen
boundries of the window.

DWINDO defines the real coordinates that will be defined in the window.
XMIN, XMAX, YMIN, YMAX are the real boundries of the window.

MOVEA moves the cursor to the point (X1,Y1). MOVEA does not cause the
write beam to draw a line. DRAWA causes the write beam to draw a
vector from the current cursor position to the point (X2,Y2).

FINITT dumps the line buffer, that is it dumps the last of the graphic
commands. FINITT also puts the terminal back into normal alphanumeric
mode and places the cursor at screen position (IX,IY).

These subroutines allow a graphic program to be structured (top down
structured programing). An example of a FORTRAN fragment that would
define the screen to be the cartesian coordinate system , (-2<x<2,
-2<y<2}, and draw the coordinate axes:

-

CALL INITT(120)

CALL TWINDOW(122,902,0,780)
CALL DWINDO(-2.0,2.0,-2.0,2.0)
CALL MOVEA(0.0,-2.0)

CALL DRAWA(0.0,2.0)

CALL MOVEA(-2.0,0.0)

CALL DRAWA(2.0,0.0)

CALL FINITT(O,780)

STOP
END

These basic five subroutines are used to do all the graphics.
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3.3 RUNNING A GRAPHICS PROGRAM

The computer that I chose for my senior project for was Cal Poly's
CDC CYBER 174, known as the Local Cyber. As I said before, the
graphics programs are standard FORTRAN IV programs. Because the PLOTI0
library was called it was necessary to use the older FORTRAN IV instead
of FORTRAN T77. Programs can be written with and without line numbers.
To run a graphics program without line numbers on the Cyber the user

types:
- ,MOVIE,PROGRAM NAME,BATCH

To run a graphics program with 1line numbers on the Cyber the user
types:

-,MOVIE,PROGRAM NAME

MOVIE is a procedure file written 1in Cyber Control Language that:
allows the user to use the PLOT10 library; calls the FORTRAN compiler;
disables the normal limits on computing time (a copy of MOVIE is in
Appendix 1). It is necessary to disable the normal limits on computing
time because the movie program typiecally runs for 4-6 hours
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4} - THE HARDWARE
4.1 THE CAMERA

The camera used to photograph the screen of the graphics terminal
was a SANYO SUPER-8 movie camera. This camera was checked out from Cal
Poly's Audio Visual department. The SANYO movie camera has a single
frame feature that allows the user to do animations. The camera
shutter is triggered by electrically shorting the two terminals of a
microjack input.

§.2 THE TRIGGER BOX

A trigger box was constructed to trigger the camera. This box
consisted of:

1) A 12 V. and a 5 V. power supply.
2) A sound operated switch.
3) A divide by two decimal counter and LED display.

The sound activated switch required 12 V. and the counter required 5
V. The sound activated switch was purchased from Radio Shack. It was
necessary to divide by two, the number times the bell triggered the
switch because, the sound activated switech had two states: open and
closed. Thus, the first ring of the bell would cause the switch to
close and trigger the camera; the second ring of the bell would set the
switch to open, which would not trigger the camera. The LED display of
the counter showed the number of Pictures taken, and not the number of
times the terminal bell had rung.

I built three versions of the trigger box. The first was soldered
on a proto board. This first version performed erratically. The
second version was wire wrapped with what is called a 'just wrap' wire
wrap tool. The just wrap tool uses unstripped wire that is wrapped
around square pegs. The idea is that the square corners of the pegs
Will cut into the insulation, and form a gas tight bond to the wires.
This did not work at all. The final version was built with a
conventional stripped wire wrap tool. This final version worked very
well. The schematic for the trigger box can be found in Appendix 2.

4.3 PROCESSING THE FILM

The film used to make the movies was Kodak Tri-x Super-8 movie film.
It was necessary for me to do all the film processing for three
reasons:

1) The film was not reversed to positive the way most movie film is; it
wWwas developed directly to negative. This was done to make the movie
easier to view; the bright green lines of the graphics terminal would
be dark black lines in the movie.
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2) The film was developed with D-19 developer for 15 minutes. This is
a high contrast developer that does not develop any grey tones; the
film will only have black and white tones. This was done to eliminate
any fogging from ambient light being emitted by the screen.

3) The film was over developed or 'pushed'. The screen of the graphics
terminal was very dim; thus, it was necessary to overdeveloped the film
to obtain greater detail.

The film was developed iIn a Arkay G-3 hand cranked movie
processing tank.



PAGE 11

5 = 3-D GRAPHICS

9.1 TRANSFORMATIONS

As explained earlier, the Tektronix graphics terminal can draw
straight lines or vectors between any two points. In general an object
to be drawn 13 represented as a set of points that vectors are to be
drawn between. A 3-D object would be represented by a set of points:

Pn(xn: n» Zn}

Transformations are used to manipulate the object in cartesian space.
There are three kinds of geometrical transformations:

1) Translation
2) Scaling
3) Rotation

In addition to the geometrical transformations a fourth transformation
is used to map the 3-D down to 2-D:

4) The perspective transformation

Each of the 3-D geometrical transformations can be represented in a
uniform way by a 4 x 4 matrix. A point is transformed by operating on
it with a transformation matrix.

(P*] = [P][A] (5-1)

[(P']
[P]

1]

[x'" y' z' 1] (5-2)

[x vy 2 1] (5-3)

af] a2 a3
[A]l = | ap1 ap2 ap3
a31 a32 333
ajq ajp ay3

(5-4)

=0 0o 0O

9.2 TRANSLATION

Points in xyz space can be translated to new positions by adding a
translation amount to the coordinates of the points. The form of the
translation transformation:

x' = x + Dx
y' =y + Dy (5-6)
z' = 2 + Dz
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In matrix form:

[T] = (5=T)

200 —
== =
-0 00

5.3 SCALING

Scaling stretches or compresses the 1image along a particular axis
with respect to the origin. The scaling transformations:

X' = x5y
y' = ¥Sy (5-8)
z' = 235
In matrix form:
Sy O 0 0
[sl= |0 sy, 0 0 (5-9)
0 0 Sz, 0
0 0 0 1

5.4 ROTATIONS

Most of wus are familiar with right-handed coordinates.
Unfortunately, the most logical coordinate system for 3-D graphics
would be the left-handed system. This gives a natural interpretation
of larger z values being into the screen of the terminal. The matrix
form of the x, y, and z rotation operators in left handed coordinates:

1 0 0 0

[Rg(e)] = 0 cose sine 0 (5-10)
0 -sine cose 0
0 0 0 1
cose 0 =sine 0

[Ry(s)] = 0 1 0 0 (5=-11)
sine 0 cose 0
0 0 0 1
cose zine 0 0

[Rz(e)] = |-sine cose O 0 (5-12)
0 0 1 0
0 0 0 1
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7
}{ P - . ""--._______-‘-_.l_lr_'r

- rl"--.'
Lefl hended coordinete system with the projectlon
of Plx,y,z)] Into the displey scresen

FIGURE 4

5.5 THE PERSPECTIVE TRANSFORMATION

The perspective transformation is used to map the 3-D object
coordinates down to 2-D screen coordinates. The perspective
transformation projects the 3-D object onto the display screen. The
projection of a 3-D object 1is defined by straight projection rays
emanating from a center of projection, intersecting the projection
plane (in this case the display screen), and terminating on each point
in the 3-D object. The perspective transformation can be derived from
similar triangles. The center of projection 1is set at the origin.
x,y,2 are the object coordinates. x5 and yg are screen
coordinates.

D(x/z) (5-13)

Ig
D(y/z)

¥s

mon
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@ =<

Flzg.yal

Pix,y,z)

displey screen

¥

The perspective trensformelion can be derived from
gimilar triengles. [(ys/0] =

ly/z) thus ys = Dly/z]

FIGURE 5
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6 -~ MATRIX PROPERTIES
6.1 BASIC PROPERTIES
The basic geometrical operations in 3-D are represented as
matricies. The task of manipulating a 3-D object is reduced to matrix
multiplications. It is therefore, important to understand some of the
basic properties of matrix multiplication. Given two matricies:
[A] with elements (ajj) and size m x p

(B] with elements (bjj) and size p x n
Their product is:

[C] with elements (cgj) and size m x n

P

(e1g) = ajybyj (6-1)
k =1

In general matrix multiplication has the following properties:

[AJ(B] # [BI[A] COMMUTATIVE LAW
([al(B1)[c] = [AJ([BI(CI]) ASSOCIATIVE LAW

6.2 COMMUTING OPERATIONS
In general Matrix operators do not commute; however, several
important cases of commuting operators can be found in 3-D graphies.
Recall the basic operator matricies used in 3-D graphics:
[T] TRANSLATION
[s] SCALING

[Re(e)]  ROTATION e = x,y or z
Commuting operations:

[(T11(T2]
[541[85]

[T21[T4] (6-2)
[52]1(54] (6-3)

1]
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[Re(e)1][Rale)2] = [Rale)2][Re(e)q] (6-4)

The commuting properties of these operators can be understood
geometrically. A net translation is independent of the order the
translations are performed. A net scaling is independent of the order
the scalings are performed. Finally, a net rotation about a given axis
is independent of the order that the rotations are performed.

6.3 NON-COMMUTING OPERATIONS

It is important to be aware of some of the non-commuting operations.
Non-commuting operators:

[TI(s] # (SI[T] (6-5)
[T][Re(e)] # [Rg(e)1[T] (6-6)
[S1[Ra(e)] # [Re(s)1[S] (6-7)

The order of the operators is important in mixed operations because the
scaling and rotation operators work with respect to the origin.

6.4 COMMON CONCATENATED OPERATIONS

Because of the origin dependence of the scaling and rotation
operators the task of enlarging or rotating an object in space is not
just a matter of operating on the object with a single operator. For
example to rotate an object about its geometric center would require
three operations: Translate it to the origin, rotate it about the
origin and translate it back to its original position. Some common
concatnated operations:

Given:
[To] is a translation operator that translates to the origin.

[Tu'I] is a translation operator that translates back
to the original position.

Rotate an object about its geometric center:
(To)[Ra(e) [Ty~ ] (6-8)
Enlarge an object about its geometric center:

[Tol[S1[Ty~ 1] (6-9)
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Rotate and enlarge an object about its geometric center:

[To1(S][Re(e) (T4 (6-10)
Translate a tumbling object:

[To1[Re(8) 1Ty~ 1[T] (6-11)
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T - GRAFIT
T.1 THE PROGRAM

GRAFIT is a FORTRAN subroutine that is used to create 3-D plots of
single valued functions of two variables. A single valued function of
two variables 1s of the form f(x,y). For every ordered pair (x,y) the
function has a unique value. GRAFIT displays f(x,y) as an altitude
above the xy plane. The resulting plots created by GRAFIT are
surfaces. The user must provide GRAFIT with an array containing all of
the z coordinates. GRAFIT removes any lines that are hidden from view
or obscured. GRAFIT also allows the user to specify the view of the
object by specifying three parameters R, THETA and PHI.

M//////l I “?iafi;o::ﬁ%ih,,

== % 0“

-
-

FIGURE 6 - TEST SURFACE. Test surface drawn with GRAFIT. Notice that
hidden lines are removed.

T.2 3-D TRANSFORMATIONS USED IN GRAFIT

Grafit represents a special case of 3-D graphics. It was not
necessary to have the program do the matrix transformations. The
transformations were worked out by hand and defined in the program as
functions. Initially the display screen represents the xy plane and the
2z coordinate is into the display. Next, the z axis rotation operator
is applied to the coordinates; this rotates the xy plane of the surface
through an angle THETA. Then, the x-axis rotation operator is applied;
this tilts the surface through an angle PHI. Finally, the surface is
translated forward and scaled so that it fits onto the screen. The
operations:

[Rz(e)][Ry(8)](Tz][S] (7-1)
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The form of these transformations:

xs = D[xcos(e) - ysin(e)]/Q (7-2)
ys = Dlxsin(e) + ycos(e)}]1/Q (7-3)
Q = [(xsin{e) + ycos(e)lsin(d) - zcos(d) (7-4)
Where
Xg and yg are coordinates on the screen.
D is the distance between the viewer and the screen.
@ 1s the angle of rotation with respect to the Z axis.
¢ is the angle of rotation with respect to the X axis.
H H
!!:IIZ:E H
B H

FIGURE 7 - OPERATIONS DONE BY GRAFIT ON A PLANE Initially the plane is
scaled and translated to optimize the use of the screen. The plane is
then rotated respect to the Z axis, through an angle THETA. Finally
the plane is rotated with respect to the X axis through an angle PHI.
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T.3 HIDDEN LINE REMOVAL

The algorithm chosen to remove hidden lines from the surfaces is
known as Wright's algorithm. This algorithm is described in great
detail in the reference 2. I looked at many hidden 1line algorithms,
most involved c¢lipping the hidden parts of vectors before the
perspective projection onto the screen. For these algorithms, the
criteria for visibility was often elusive. These methods were often
brute force solutions to the hidden line problem. Wright's algorithm
is very simple to implement and has virtually nothing to do with the
three dimensional nature of the picture being drawn. This algorithm
clips the hidden parts of vectors after the perspective transformation.

Wright's algorithm can be stated as this: Draw the picture from front
to back, and don't draw where you have already drawn.

7.4 IMPLEMENTING WRIGHT'S ALGORITHM

The implementation of Wrights algorithm can be broken into several
steps:

1) The surface 1s represented as a regular array of x and y points.
Each F(x,y) has an altitude represented by the z coordinate. Thus the
surface is like rubber graph paper. :

2) The surface is broken into segments of constant x and constant y.

3} The surface is drawn front to back using segments of constant x and
constant y.

) A visibility test is applied to the end points of each segment. If
both ends are visible then the segment 1is drawn. If both ends are
obscured then the segment is not drawn. If one end is visible and one
end 1is obscured then the intersection between the surface and the
segment is calculated and the segment is drawn from the intersection to
the one visible point.

7.5 VISIBILITY TEST

The second half of the algorithm is: Don't draw where you have
already drawn. This is achieved by maintaining 2 arrays, one of the
upper bound of the surface and one of the lower bound of the surface,
as a function of screen x coordinate. The visibility test is then used
to test both end points of a segment to see iIf they lie between the
lower bound and the upper bound.
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FIGURE 8 - WRIGHT's ALGORITHM. First segments of constant x are drawn;
then segments of constant y are draw. This process continues until the
whole surface is generated.
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FIGURE 9 - VISIBILITY TEST. Below each picture is the current
upperbound for the surface. If one of the end points of the segment is
below the upper bound then the Iintersection of the segment and the
surface is calculated. The segment is only drawn to the intersection.
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7.6 STEREO VIEWS

Since the user can specify the view of the surface it 1s very easy
to generate stereo views of surfaces. Below 1s a stereo view generated
by GRAFIT. This view is mirrored. It may be viewed by placing a mirror
between the two views. One eye should look directly at the first
picture, while the second eye should view the reflection of the second
picture.
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FIGURE 11 - VIEWING THE STEREC VIEWS GENERATED BY GRAFIT.
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8 - WAVE EQUATIONS
8.1 WAVE EQUATIONS

My Senlor Project considered a special class of partial differential
equations (PDE) known as wave equations. A wave equation 1is a linear
second order PDE of the form:

720 = ¥20/3t2 (8-1)

A set of conditions on the continuity of U and its derivatives are
known as boundary conditions. The wave equation and boundary
conditions constitute a boundary value problem. The solution of a
boundary value problem is known as a wave function. A wave function is
some function that will satisfy the wave equation and any boundary
conditions that are imposed on the wave equation.

8.2 1-D WAVE EQUATION

The 1-D wave equation has the form:

Wyl = (1v2) Ryl (8-2)

=

The 1-D wave equation can be derived from Newton's second law, F = ma
applied to a small segment of the string. Consider the figure:

Tsin(82) T
e ax ‘ﬂ
_J
Teinm(B]]
X =0 M o= paax " x = 4w

FIGIRE 12 - SEGMENT OF STRING USED TO DERIVE THE 1-D WAVE EQUATION.
The string has a linear density (mass per unit length) of .
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Several assumptions must be made to simplify the derivation of the
wave equation. We must assume that the amplitude of the wave is small
enough for o and o to be small. This gives several simplifications:

1) x is ~ the length of the segment.
2) sine ~ tane
Applying Newton's second law:
Tsin(eq) - Tsin(es) = ma (8-3)
But for small angles sin(e) ~ tan(e):
T[tan(eq) - tan(ep)] = ma (8-1)
substituting m = MAx and a = dzyfdtz:
Ttan(eq) - tan(ep)] = (max)a?y/dt? (8-5)
But tani{e) = dyfdr:
= 29 /de2
T((dy/dx) |g-g - (dy/dx)|y=px] = (uax)d<y/dt (8-6)
Dividing through by Ax:

T[(dy/dx) [g=p - (dy/dx)|yg=pyl/ax = d2y/dt? (8-7)

But: 11m x—>o([(dy/dx)|g=o - (dy/dx)|g=pxl/ax) = (d2y/dx2)

Therefore:

3292 = (T)fy/ae2 (8-8)

Where the velocity of the media is:

v = (T2 (8-9)
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8.3 2-D WAVE EQUATION

The 2-D wave equation in cartesian coordinates has the form:
'bejrfhz + '&nybzz = (1/v°) fy Rt (8-10)

The 2-D wave equation can be similarly derived from Newton's
second law, F = ma, applied to a small segment of a square membrane.
Consider the figure:

TAz Teazsin (@]) Y
'
X
i
By
N N
'f// A Egl’fazsiniﬂgl‘

Taz

FIGURE 13 - SEGMENT OF MEMBRANE USED TO DERIVE THE 2-D WAVE EQUATION.
The membrane has a surface density (mass per unit area) of p. 7 Is the
linear tension (tension per unit length).

Following the assumptions made for the 1-D equation, this equation may
be derived in a similar fashion. The force contribution in the ¥y
direction due to the x direction, Fy:

(Z2az)sin(eq) - (Yaz)sin(es) = Fy (8-11)
But for small angles sin(e) ~ tan(e):

(taz)[tan(eq) - tan(es)] = Fy (8-12)
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But tan(e) = dy/dx and Fy = ma, = paxaz(ay):

Wﬂﬂ)[(@fﬂﬂl:m - (dy/dx) |g=ax] = Pox4z(ay) (8-13)
Dividing through by p4x4z:

(7e)[(dy/dx) |g=o - (dy/dx)|g=ax]/ax = (ay) (8-14)

But, 1im x—>o([(dy/dx)|x=0 - {dyfdx]|1=d1]ﬂm1} = {dzyfdxz}

Therefore:

d°yrdx® = (£/7)ay (8-15)
similarly:

d?y/dz? = (£/7)a, (8-16)

The total force on the membrane is the sum of the x and z contributions:

ay + az = doy/dt2 (8-1T)
Thus:

%322 + yr322 = (Sr) Py (8-18)
Where the velocity of the media is:

v = ()12 (8-19)

8.1 SOLUTIONS TO WAVE EQUATIONS

Many techniques exist to solve PDEs. I chose two different
techniques to solve the wave equation:

1) D'Alemberts solution
2) Separation of variables
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9 - MOVIE 1, D'ALEMBERT'S SOLUTION TO THE 1-D WAVE EQUATION
9.1 - D'ALEMBERT'S SOLUTION TO THE 1-D WAVE EQUATION

The most general solution to the 1-D wave equation is:
Y(x,t) = 172[f(x + vt) + £(x - vt)] (9-1)

Where f(x) is a function that represents the shape of the string at time
t =0, and v is the wave velocity of the string. The string's motion can
be thought of as the averaged superposition of two traveling waves

moving in opposite directions. The story boards for the first movie
visually demonstrate this.
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FIGURE 14 - STORY BOARD FOR D'ALEMBERTS SOLUTION TO THE 1-D WAVE
EQUATION. Frames 1 through 3: the movie shows a string in the second
mode. Frames 4 through 6 the string stops vibrating and the screen is
panned back from the string.
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FIGURE 15 - Frames 6 through 12: we see that the string's motion is a
superposition of two traveling waves moving in opposite directions.

Y(x,t) = 1/72[f(x + vt) + f(x - vt)]
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10 - MOVIE 2, FOURIER SOLUTION TO TO THE 1-D WAVE EQUATION
10.1 SEPARATION OF VARIABLES
This is a powerful technique for solving PDEs. Separation of

variables can be applied to the 1-D wave equation boundry value
problem. Adopting a notion that is easier to type:

Yoy = (1/v3)yet (10-1)
y(0,t) =0 Right end bound (10-2)
yle,t) =0 Left end bound (10-3)
y(x,0) = f(x) Initial shape of the string (10-4)
ye(x,0) = 0 Initial velocity is zero (10-5)

Where ¢ is the length of the string and v is the wave velocity. We
assume that y(x,t) is the product of a spatially dependent function and
a temporally dependent function.

y(x,t) = X(x)T(t) (10-6)

Substituting this expression into the wave equation and separating
variables gives:

(X' (x)/X(x)) = (T''(6)/V3T(L)) = -x (10-7)

Both sides are equal to a constant. The choice of -»is for the
convevience of notation. The seperation can be completed to form two
ODEs. These ODEs plus boundry conditions form a Sturm-Liouville
Problem.

X' (x) + ?~I{§} = 0 (10-8)
T''(t) + {(Av=)T(t) = 0 (10-9)
X0) =10 (10-10)
X(e) =0 (10=11)
T'{(Q0) = 0 (10-12)

-00< > <00 Thus, three possible problems must be considered: » < 0,
=0, and >> 0. It can be _shown that all cases except ™ > 0 yield

trivial solutions. Let »= -b2, The solutions to the ODEs are:

X(x)

Asin{bxa + Becos(bx) (10-13)
T(t)

Csin(bvet) + Decos(bvet) (10=11)
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Applying the boundry conditions gives:

B=20 (10-15)

C=0 (10-16)

b = nt/c (10-17)
The numbers = n?#?fcg are called eigenvalues.

Substituting the eigenvalues into the solutions gives a set of
solutions known as eigenfunctions:

in(x) = Asin(n¥Tx/c) (10-18)
Tp(t) = Deos(ntit/ve) (10-19)

Forming the product solution:
yn(x,t) = bpsin(nix/c)cos(mwt/c) (10-20)

A linear combination of solutions to a PDE iIs also a solution to the
PDE. This is known as the principle of superposition. The next step
is to sum up all of the eigen functions into a single solution:

y(x,t) = bpsin(ntx/c)ecos(nlvt/c) (10-21)

o
n=1

If we apply the final condition regarding the initial shape of the
string (10-4):

oo
£(x) = Z bysin(ntix/c) (10-22)
n=

If we multiply both sides by sin(mWx/c) and integrate over the length
of the string.

c oo
J’f{x]sin{nﬁ:fc]dx =an\]-:in{:fﬂ:fc}sin{mﬂﬂc}dx (10-23)
1 Jo

Q =



PAGE 32

But

c

sin(mx/e)sin(nlix/c)dx = (e/2)nm (10-24)
(]

Thus the only non-zerc members of the series are when n=m. The
coefficients b, can be given the values:

c

by = (2/¢) |f(x)sin(nfx/c)dx (n = 1,2, ...) (10-25)
Q

The complete solution to the 1-D wave equation is thus:

ylx,t) = i?i bpsin(nTx/c)ecos(nivt/c) (10-26)
n=1
o
bp = (2/¢) | f(x)sin(rltx/e)dx (n = 1,2, ...) (10-27)
0

10.2 The Plucked String

The plucked string is a special case of the 1-D wave equation. In

general for a string of height h with a length ¢ the initial shape is
defined as:

2hix/c) 0D <x < eaf2
f(x) = (10-28)
2h(1=-{x/ec)) e/2 <x < e

bn can be calculated from 10-16 as:

by = (4he/n%¢)sin(ntv2) (10-29)
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This gives us a complete solution:
00
y(x,t) = {ﬂhc!ﬁzigz (1/n2)sin(nx/c)cos(nivt/c) (10-30)

n=1

Let kp = (ni/c) and wy = (nitv/c) we have:

o
y(x,t) = {uhch[z}anz}sin[kﬂx}caa{ﬂnt} (10-31)
n=

Wp = Vkp (10-32)

10.3 PHYSICAL INTERPRETATION

First this general solution to the wave 1is intended to model the
behavior of a plucked string. The solution 1is a function of space and
time. The equation for the solution has four distinet parts. The
constant in front of the summation scales the total solution for the
plucked string. The sine terms are the spatial harmonics that describe
the initial shape of the string. the sum of the spatial harmonics
gives the complete shape of the string. the cosine terms are the
temporal harmonics that describe the motion of the string. the sum of
the temporal harmonics gives the complete motion of the The temporal
harmonics are proportional to the frequencies that the string is
vibrating with. The (1/n? ) indicates that the contribution of the
spatial and temporal terms each fall off like (1/n), the harmonic
series.

The spatial part of the solution is fixed with respect to time. The
spatial part of the solution iz modulated by the temporal part of the
solution. w,is related to the fregencies that the string is vibrating

at:
WHp = E'ﬂfn {1{.'-33}
k,is related to the wavelength of a particular frequency:

If.n = ETU?\. ‘.“3—34)

Note that the ratio of (ww/kn ) i3 always the velocity. This says
that each temporal harmonic of the solution has the same velocity. If
this were not true then the media would be dispersive. We assumed
initially that our media was non-dispersive, that is v was a constant
in the 1-D wave equation. A real string 1s probably dispersive,
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however this solution provides a close model for the behavior of the
string.

FIGURE 16 — STORY BOARD FOR THE A MOVIE OF THE PLUCKED STRING. This
movie demonstrates the time dependent Fourier solution to the plucked
string.

00
yix,t) = [uhﬂfﬁ;}:£:{1fﬂ2]$1ﬂ{knl}ﬂﬂﬁiﬂnt}
n=1
Wp = (nhkv/c)
h = initial height of the string
v = the velocity of sound in the string
¢ = the length of the string
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11 — MOVIE 3, FOURIER SOLUTION TO THE VIBRATING MEMBRANE

11.1 THE PROBLEM

Consider a flat membrane that is bound on all sides. The membrane is
initially displaced with no initial velocity. The problem of the
vibrating membrane can be stated as: :

Yix + Yoz = [1fv2}ytt (11-1)
y(0,0,t) =0 (11-2)
y(a,0,t) =0 All sides bound (11-3)
F{a,b't} = ﬂ' {11_5}
y(x,2,0) = f(x,z) Initial shape (11-6)
ye(x,z,0) = 0 Initial velocity 1s zero (11=T)

11.2 SOLUTION

Using the technique of seperation of variables the solution to this
problem can be found.

Q0
y(x,z,t) %EE: E?f Amnsin[kmx}siﬁ{kﬂz}cns{umnt] (11-8)
m=1 n=1
Apn = {ufab}d[hqu{x,z]sin{kn;}sin{knu}d:dz (11-9)
o0 jo
Wmn = [Eﬂz-l'kma}? {11 “}]
kpy = (m /a) (11-11)
kn = (n /a) (11-12)

11.3 THE MOVIE

Because of the enormous number of calculations that are needed to
calculate a complefte solution to the vibrating membrane problem, I
chose to display several of the temporal harmonics in motion.
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FIGURE 17 — SEVERAL MODES OF THE VIBRATING MEMERANE
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FIGURE 18 - STORY BOARD FOR A MOVIE
OF THE VIBRATING SQUARE MEMERANE.
The membrane is in the 2,1 mode.
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CONCLUSION

The project was gquite a large one. I think that perhaps I bit off
more than I could chew. 1In any case, I learned a great deal from the
project. Almost all of the project was home brew, I pretty much
started from scratch. The 3-D surface program was used by Ashod
Shamelian to display the results of his senior project. Also, I did a
colloquium for the Physics department on what I had done.

I would like to take this opportunity to thank the Cal Poly Physics
department for all that they gave me in my years as a student.



APPENDIX 1

Listing of the Cyber Control Language (CCL) procedure file, MOVIE



.PROC,MOVIE, P, BATCH=FALSE/TRUE.
*

S HER I 0 0 0 00 2600 30 36 0606 20 3 9600 600 06 06 0000 00 00 00 00 30003 00 3000 0 20 0000 0 TEE 00 20 R M NN

* GREGORY PAT SCANDALIS

MARCH 1,1983

THIS IA A CCL (CYBER CONTROL LANGUAGE PROCEDURE) THAT INTERFACES THE
GRAFIT PROGRAM WITH THE NOS OPERATING SYSTEM. THE PURPOSE OF THIS
PROCEDURE IS TO ATTACH THE GRAPHICS AND MATH LIBRARIES

AND TO COMPILE AND EXECUTE THE PROGRAM. THIS PROCEDURE WILL ALSO
DISABELE THE NORMAL LIMITS ON CPU TIME. THIS WILL ALLOW THE MOVIE
GENERATION PROGRAM TO RUN CONTINUQUSLY.

L - L 3 L]

ek ok Nk M M ok sk ok

INVOCATION: -,MOVIE,PROGRAM NAME,BATCH (NO LINE NUMBERS)

-,MOVIE,PROGRAM NAME,BATCH (WITH LINE NUMBERS)
RN TN I I 0 00 30000030 0 T 000 0 00 00 00 0036 3606 06 00360 060006 00 0030 0 3000 000036 36 0000 630 9606 006 5

*

o TR TN 0E6 000 0000 00 0000000 00 000220 0 0T 00600 200 20000 00 0 0000 0 TR0 R
.* LOOK TO SEE IF THE FILE EXISTS

o R0 3 0 36 303 0 03 00 300 00 2 0 I 0 T 0 0 0 0 00
*

$IFE, .NOT.FILE(P,AS), GET IT.
$GET,P/NA
$IFE, .NOT.FILE(P,AS), BAD NAME.
$NOTE.+ +CANNOT FIND P IN THIS ACCOUNT!+ +
$REVERT
$ENDIF,BAD NAME.
$EHDIF,GET IT.
*

LERRRRERRERR R R R RN RN R RN RN R E RN R AR R AR R R LR RN AR AR R R RN EE R XX

.* REWIND THE SOURCE CODE FILE
o TR BN 6T 00 3 36 060 00T I 0000 T 0T T 06 0003000 0T 00 000 00 T 0 0 000 00 000 0

#*
*

*
L]
-
L]

:*iiiiiI***i*ii******i*ﬂiiii***iii*ii**i***i*****i**i*ﬂ*li*i*i**!**i***i
.* GET THE CYBER SYSTEM INTERFACE LIBRARY
_*ii*i**i*i*i*iii*i***iiiil**ili*liiii*i*i*i**ii**i**********l**********
*

$1FE, .NOT.FILE(CSUBS,AS), GET IT 2.
GET,CSUBS/UN=LETPLOO

$ENDIF, GET IT 2.
*

o NN 06 2 006 002 T R 0 0000 2 0 000 0 3 3 230 30 0636 0 0 0 0 0 0 0T 3 TR 0600 0 0 0
.% ATTACH THE GRAPHICS SUBROUTINES

o R 32 000 30 2 3 20 20 U 0000 T 06 D 00 W06 -3 26 3006 363060 0060 00000 00 0600 00T 0 0006 06 62 06 36 306 3 6 -
*

$IFE, .NOT.FILE(TEKLBR,AS), GET IT 3.
GET, CSUBS/UN=LIBRARY , NA

$ENDIF, GET IT 3.
%

L

o S 000 00 0 0 003306 36363030 206 30 360000960 36 060000 0006 00 30 30600000 06 0606 6 363606 060600 06000 00 9 25 06 96 9596 96 9096 %

.* ATTACH THE MATH SUBROUTINES
o TR T30 T T 06 0003636 300 6 0006 06 00060000 063000000836 36 0606 00036 06 20600 3063606 00 000 00 00 00030 003 20 63

$IFE, .NOT.FILE(ZZZMATH,AS), GET IT 4.
GET, CSUBS/UN=LBJZL0O.

$ENDIF, GET IT 4.

$RETURN,LGO, DOIT.

*

o T T T 0 00 00 0T 36 00060 0 369600 63 3600 26006003600 0600 00003000 00 9036 00 0 -0 36 006 30 902600 00636 900600 00 00 9600 00 969600 0 96 9 36



.¥ CALL THE FTN COMPILER (FORTRAN), USE EITHER THE BATCH OPTION *

.®* OR THE NO BATCH OPTION. *
JERERERE NN RN RN RN AR RN AR R R E R AR AR AR R R ER R RN R XA RN

*

$IFE, BATCH, CARD IMAGE.
$FTN,I=P,L=0,REW.
$ELSE, CARD IMACE.
$FTN, I=P,L=0,REW, TS, SEQ.
$ENDIF, CARD IMACE.
*

-

o TR0 000 20000 00200 0 000000 000 00 0 000 3636 36 00 0000 00 90 0 0 9030 300 0 39 369030 96 36 3390 30 30 90 30 3600 90 90 36 36 030 300
.* DISABLE THE TIME USE LIMITS *
_*************i!****ii**ii**i**i**iiii****iiiii***i**i***ii****i******ii
1*
$SETTL, *.
$SETASL, *.

$SETJSL,*.

*

o TR N0 0 00 00 0T 00 D00 2 00 00 00 06 200 00 0000 30 00 00 0 3 363636 90 00 3 T30 3696 90 00 30 30 30 30 30 0 3 30 -0 0

.* LOAD AND EXECUTE, NO MODULE GENERATED. ®
LRI NI I I RN TN I R RN R NI IR R

*

$LDSET,L1B=ZZZMATH/CSUBS/TEKLER , PRESET=ZERO.
$LOAD(LGO)

$NOGO(DOIT)

DOIT.

$RETURN,LGO,DOIT.

*

_**ii‘**i**iiﬂ**ﬂ**l*iiﬂ*ii*iii**i!ii**ii***l*iii*****ii***i**iii**i**i*

% MAKE THE NAMED FILE THE PRIMARY *
JHRRREE RN RN R R RN E RN R RN RN RN E R R R
o
$1FE, .NOT.FILE(P,PT), MAKE PRI.

$PRIMARY ,P.

$ENDIF, MAKE PRI.
$REVERT.



APPENDIX 2

Schematic for the trigger box
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APPENDIX 3

Listing of GRAFIT



00&600
QO&700

00&680C
DO EFOCH-3 500 0 B 3 00 000 O 0 0 0 0 B O O
falopgalamg T2 XTI EIS RIS RIS SIS TSI RIS R A R EOTE EY R Y

QO710C

007200

00730C

CO740C THE SUBROUTINE GRAFIT DOES THE 3-D GRAPHICS
Q073500 THE DRIVER MUST PROVIDE THE COMHMON ARRAYS:
007500 XK{Z26,26) ,¥(26,26) ,I(26,256). 1IN ADDITION
Q07FOC THE FOLLOWING PARAMETERS ARE PASSED THROUGH
Q7800 BRAFIT: R- HOW FAR AWAY THE SURFACE IS
00790C THETA= THE AZIIMUTHAL ANGLE
00800C PHI= THE COLATITUDE ANGLE
o0oB10C D- THE DISTANCE OF THE OBSERVER
c0820C TO THE PROJECTIDON FPLANE

QO830C

C0B40C

00850C

GOS0 a0 6 000 06 000 30 00 5000 B 0 308 3 0 B0 B-4E 0F B0 3 -0 B OO 06 -0 B O OF R 30 A0 B 9R 3 0 0 O B 0RO 0F -BH0E O
QOBT CC e 000k 4 0 0 0 0B 0 B0 - B 5 B R A

00BBOC
OOB0OL

009000

00910 SUBROUTINE BRAFIT(R,THETA,PHI,D, IFRAME)

00920 DIMENSION XS(2&,2&),YS(24,2&) ,DEPTH{4) , HMAX (1024) ,HMIN(1024)
00930 COMMON/POINT /X {26,26) ,Y(26,26) , (25, 25)

00740+ /DATA/XSC, YSC, COSTH, COSPHI , SINTH, SINPHI,, RR, DD
00950+ FHEIGHT /HMAX { 1024) ,HMIN (1024}

00FEO DO 10 I=1,1024

00570 HMAX (1) ==38, 95

00980 HMIN(I)=39, 95

00990 10 CONTINUE

01000 THETAA=THETA#0. 017453

01010 PHI I=PHI*0. 017453

01020 COSTH=COS ( THETAA)

01030 COSPHI=COS (PHII)

01040 SINTH=SIN (THETAA)

01050 SINPHI=SIN(PHII}

01040 RR=R

01070 DD=D

01080C

01090C

01100C



IR R i T R A e T L e s s et s Lt

01120C

01130C TRANSFORM AND MAP THE 3-D DOWN TO 2-D
o1140C

O 1 1 SO0 4 518 0050506 001500 000 060000000 0 00000 0 I I 0 0 0 T 0 B 0 S S O 0 B 0
01140C

01170C

01180C

01190 DO 400 I=1,26

01200 DO 300 J=1,26

01210 CALL TRNSFMIX (I J) Y (I yJ)yZ(I,J})
01220 XS(I,J)=X8C

01230 ¥S5(I,J)=YSC

01240 3JI00 CONTINUE

01250 400 CONTINUE

01260C

01270C

01280C

O L Z R0 AR A0 0 B B B B B B B A
013000

013100 SET W THE VIEWPDRT

Q13200

O 1 TEOT 040 0 S 0 B 0 30 003 B B0 A R B B B B O O A A O
Q13300

01350C

01360C

01370C

013800

013900

O 1 000 8- 00 00 50 S0 0 000 3000 B e -0 B B 0 B0 A 0 A 0 B
01410C

014200

014300 IN ODRDER TO HIDE THE OBSCURED LINES GRAFIT MUST
01440C DRAW FROM FRONT TO BACK. THIS NEXT SECTION WILL
01450C LOCATE THE CLOSEST AXIS AND SET IFLAG.

O14&80C THE VALUE OF IFLAG IS USED TO IMPLEMENT A CASE CONSTRUCT
O1470C IF IFLAG= 1 DO MODULE 1

o1480C z DO MODULE 2

01490C 3 DO MODULE 3

01500C 5 DO MODULE &

O1510C

01520C EACH MODULE IS DESIGNED TO DRAW THE CLOSEST PART OF
01530C OF THE SURFACE FIRST.

01540C

O 1 SS500 40 00035 050050 5000 030 55 0000 Ak 00 00 Bk 00 05 00 0 0RO 0000 20 0 00 B0 0RO 0 3 OF B A R R
01560C

015700

01580C

01590 DEPTHI{1)=ZZ (X {1&6,1),¥(1&,1),20(15,1}])

01600 DEPTH(2)=2Z (X(2&,16),Y(26,16),2(26,16) )

01610 DEPTH(3) =22 (X{14,25),Y (15,26} ,2{14,24))

01420 DEPTH(4}=2Z (X(1,14),Y(1,1&),2(1,14&))

01430 IFLAB=1

015640 DO S00 I=2,4

01650 IF (DEPTH(I) .LT.DEPTH(IFLAG)) IFLAB=I

01650 SO0 CONTINUE
01470 BO TO(&00,700,800,%00), IFLAG



0146B0C
014690C
Q1700C
O 17 L0055 300 00 I I I T I B0 0 3 000 B B I S R
G1720C

01730C

01740C MODULE 1 STARTS AT &00

01750C

017&0C

O 1 7700 % 80 -0 0 0 0 S B - 0 o A -
01780C

017%0C

01800C

01810 400 DO 630 J=1,26

01820 CALL MOVEA(XS(1,J),YS(1,J))

01830 DO &10 I=2,26

01840 CALL PLOTEST(XS(I-1,J),YS({I-1,J},XS(I,Jd),YS(I,J))
01850 &10 CONTINUE

01860 IF{J.EQ.26) BO TD 1000

01870 DO &20 I=1,26

01880 CALL MOVEA{XS(I,J),YS{I,J))

01890 CALL PLOTEST(XS(I,J),YS(I,J),X8(I,J+1),¥S(I,J+1))

01900 420 CONTINUE

01910 &30 CONTINUE

019200

01930C

01940C

O 1 TSSO 590 3905 050000 0008 300 36 30000 0 B0 0 00 T 3 0 30 3 3 0 00 B 0 00 300 3 0 3 B B
019460C

Q1700

19800 HODULE 2 BTARTE AT 70O

01990C

Q2000C

20 1 OC 8 00 0 0 00 0 BT 0 T 0 T 00 O B0 00 00 3 0 B 30 B 6 300 3 B B 0 B
Q20200

02030C

02040C

02050 TOO I=25

02080 TOS CONTINUE

02070 CALL MOVEA(XS(I,1),YS(I,1))

02080 DO 710 J=2,24

02090 CALL PLOTEST(XS(I,J-1),¥S(I,J-1),X5(I,J},¥S(I,J))
02100 710 CONTINUE

02110 IF{1.EQ.1) BO TD 1000

02120 DO 720 J=1,26

02130 CALL MOVEA(XS(I,J),YS(I,J))

02140 CALL PLOTEST(XS(I,J),¥YS(I,J),XB(I-1,3),YS(I-1,0))
02150 720 CONTINUE

021460 I=1-1

02170 60 TO 705

02180C



02190C

02200C

022 1 QUS55 0 003000000 060000 0006 00 000 A 0 0 B S B 3 0 00 3 0 B 0 0 0 B
02220C

02230C

02240C MODULE X STARTE AT 800

02250C

022&60C

Q227 QUS040 000 S 30 003 0 A0 0 0 30000 0608 00 00 00 S B S 3 B 3 0 T I B T 3 0 000 9 0
02280C

02290C

023I00C

02310 BO0 J=2&

02320 B0S CONTINUE

02330 CALL MOVEA(XS(25,J),YS(24,J))
Q2340 I=50

02350 806 IF(1.EQ.0) BO TD B10

02340 CALL PLOTESTIXS(I+1,J),¥S(I+1,J),X8(1,J),¥S(I,J})
02370 I=I-1

02380 60 TO 80&

02350 810 CONTINUE

02400 IF(J.EQ.1) BO TO 1000

02410 Im2&

02420 B15 IF(1.EQ.0) BO TO 820

02430 CALL MOVEA(XS(I,J),¥S(I,J))
02440 CALL PLOTESTI(XS(I,J),¥YS(I,J),X8(1,J=-1),¥5(I,J=-1})
02450 I=1-1

02440 BO TO 815

02470 820 CONTINUE

02480 JmJ-1

02490 B0 TO BOS

025000

02510C



025200

OZFZOC A0 AT SIS0 B0 0 3 000 B T I I 0 B T B B B 0 0 I
02540C

02550C

02350C MODULE 4 STARTS AT %00

02570C

02580C

O GOC - I AT T 0 3 S 0 B 0 0 0 B T 30 10 006 0
02600C

02610C

02620C

025630 900 DO 930 I=1,26

02640 CALL MOVEA(XS(I,258),YB(1,25))

02650 oJ =350

026460 905 IF(J.ER.0) BO TO %10

024670 CALL PLOTEST(XE(I,J+1),¥YB(I,J+1}),X5(I,J),¥YS(I,d})}
02680 JuJ=1

024690 G0 TO 905

02700 910 CONTINUE

02710 IF{I.EQ.2&) B0 TO 1000

02720 J=28

02730 915 IF{(J.ER.0) B0 TOD 920

02740 CALL MOVEA(XS{I,J),YE(I,J))

02750 CALL PLOTESTI(XS(I,J),YS(I,J},XS(I+1,J},¥E5(I+1,J))
02760 J=J=—1

Q2770 B0 TO 915

02780 920 CONTINUE
02790 930 CONTINUE
02800 1000 CONTINUE

02810 IFRAMEE=IFRAME %2

02820 DO 101¢ I=1, IFRAMEE
02830 CALL BELL

02840 CALL MOVEA(-51.15,-51.15)
02850 CALL DASHA(-51.15,0.0,3)
02840 1010 CONTINUE

02870 RETURN

02880 END

028900

Q2F00C



029100
nﬂqzu:ii*liiniiliﬁiulii*niiii*ﬂliiiiﬂil&tlifiﬂlnnlituinii*iniii*iiliii*i*in
ﬂﬂ?;ﬂcli*iilli*illillil!iiﬂllli*iliiilillii*illiiﬂﬂﬂlii*llliﬂllili*iililil
02940C

02950C

029600 SUBRDUTINE THAT MAPS 3-D INTO 2-D

Q2970C

02980C
uzﬂﬂﬂﬂjiiiilintliliiiiiii*ii*iliiﬁiinliiiui:iiiuiiiu*iliinuili#ﬂnllii*}iliu
n:ﬁﬂncinlii*iniiilnllii*niiﬁ*nliiiniliininiiiilliiinitii*nuiii*niii*ililiii

03010C

03020C

O3030C

03040 SUBROUTINE TRNSFM(X,Y,1)
03050 EﬂHHﬂHIbﬁTﬂIIEE,?EE,EDETH,EDEPHI,EIHTH,EIHFHI,HH,DD
030&0 YP=X#COSTH-Y#SINTH

03070 YINTER=X#SINTH+Y=*COSTH

03080 vPwY INTER#COSPHI+ZI#SINPHI
03090 7Pm—Z #COSPHI+Y INTER*SINPHI+RR
03100 ¥SC=XP#DD/IF

03110 vySC=YP#DD/IP

03120 RETURN

03130 END

03140C

03150C

03140C

nu:Tﬂniitni*iiiii*illii*ﬂli&ﬁniiii*nllii*liii*il*iiiii*n*iitun*i*ﬂuiinﬁ**li
DE1Eﬂn*|iiiﬁ*iiiiiiitliiiiliiliiiﬂiiiiinliiiﬂiliiiilliiiliiﬁipili*nlli*iili
03190C

O03I200C

03210C FUNCTION USED TO FIND THE DEPTH OF A POINT

03220C

03230C
DEE#ﬂEiiiIiiﬂiiiiiili!linitii*tn*iiiiiiiirin*ﬂiti*i*ili*liil*ﬂqii**n*iiiiii
nszsﬂcI*nniliiiiiiﬂnIiinntiﬂiiiiiiinqiil*ﬂniiiilliinilitniniuuniii*niiﬁilit
03260C

03270C

03280C

03290 FUNCTION ZZ(X,Y,ZI}

03300 COMMON/DATA/ XSC, YSC, COSTH, COSPHI ,, SINTH, SINPHI , RR, DD
03310 77m ( X#SINTH+Y#COSTH) #SINPHI +RR—I#COSPHI

03320 RETURN

03330 END

03340C

03IIS0C

033&0C



O X 700 3% 000 50 W0 3 R A A
OX ZEOLC 5 %5 % 55 F 33 8- EHE 5 O

033900
03400C
034100
034200
034 30C
03440C
03450C
034560C
034700

THIS IS THE SUBROUTINE THAT HIDES THE OBSCURED LINES.

THE METHOD IS KNOWN AS WRIGHT'S METHOD.

A REFRENCE

CAN BE FOUND IN IEEE PAPERS ON COMPUTERS-——

O X4 500C 8- 0904 0 000 5 040 000 B 00 D B0 0 0 B B B B B O B 0 B B0 B B 0
O TG 00 B0 0 B0 A B 0 B O 0 B B A 0 O O O O O B

035000
033100
03520C
03530
03540
03550+
035460
03570
3580
035%0
03400
035610
03620
03630
03540
038650
036540
Q3870
03580
03690
03700
03710
03720
03730
03740
Q3750
03760
Q3770C

SUBROUTINE PLOTEST(XX1,Y¥Y1,XX2,YY2)
COMMON/HEIGHT/HMAX {1024} ,HMIN(1024)

S XYINTER/XINTER, YINTER
Xi=XXx1

X2mX X2

Yim¥Y1

Y2=m¥YY2
Ii=mINT(10.0#X1+512.5)
I2=INT(10.0#X2+512.5}
IVISBi=]

IVIS2=]

IFI{Y1l.LT.HMAX(I1).AND.Y1.BT.HMIN(I1)})
IF(Y2.LT.HMAX (I2) .AND.Y2.GT-HMIN(IZ2))

IVIS1i=0
IVISZ2=0

IF(YL.EQ.HMAX(I1).OR.Y1.EQ.HMIN(I1))} IVIS1=2
IFIYZ2.EQ.HMAX (I2) .DOR. Y2.EQ. HMIN{IZ2)) IVIS2=2

IF(IVIS1.ER.1.AND. IVISZ.EQ. 1)
IF{IVIS1.EQ.C.AND. IVISZ2.EQ. Q)
IF({IVIS1.EQ.1.AND. IVIS2.EQ.0)
IF(IVIS1l.ER.0.AND. IVISZ.EG. 1)
IF({IVIS1.EQ.O.AND. IVIS2.ER.2)
IF(IVIS1.ERQ.2.AND. IVISZ2.EQ. Q)
IF(IVIB1.EQ. 1.AND. IVISZ2.EQ.2}
IF(IVIS1.EQ. 2.AND. IVISZ2.EQ. 1)
IF{IVIS1.EQ.2.AND. IVIS2.EQ.2}

SEBEE88EE

TO
TO
TO
TO
TO
TO
TO
TO
TO

100
200
SO0
400
{400
200
100
100
100



OIS TBOC #5545 5 5 I I R IR R AR RN R RS AR S
03790C

03800C CASE 1, BOTH ENDPOINTS VISABLE, STARTS AT 100
03810C

OTE 00 -8 555 50 50 R R R R T
03830C
03840 100 CALL DRAMA(XZ2,Y2)

03850 CALL UPDATE(X1,Y1,X2,Y2)
03B8&0 B0 TO =00
03870C

OSEEOC & 55 3535 8- R 0 0 S T 0 3 03 3 SR 06 0 3 O 0 B R
oIB8T0C

0353000 CASE 2, BOTH ENDPOINTE OBECURED, STARTS AT 200

03F10C
Olﬂzucilﬂiintiiiiiiiuiliiiiniiiitii*niiin*inli*iiﬁluﬁnilliiunii*ﬁunn**itii
039300

03940 200 CALL MOVEA(X2,Y2)

03930 80 TO 500

O39&00
DE?TﬂCiiiiiI‘*Ii**i*iiililiiiiii*iiﬂiﬂli‘ii**ii*iiillii*i**i**il*lll**h*ﬂi
OI9B0OC

Q3990C CASE 3, PDINT 1 VISABLE AND PDINT 2 DBSCURED, STARTS AT 300
040000

OO 1 DT 0 00 3 B - O 0 B0 0 B A 9 0 B - B O R 3 3
04020C
04030 300 CALL SEARCH(X1,X2,IVIS1,X2,Y2, IVISZ)

040480 CALL DRAMWA{XINTER, YINTER)

04050 CALL MOVEA(X2,Y2)

04060 CALL UPDATE{(X1,Y1,XINTER,YINTER)
04070 80 TO 500

04080C

QA QDO -5 I S I I S 0 0 0 0 T T I R R SRR
04100C

o4110C CASE 4, POINT 1 OBSCURED AND POINT 2 VISABLE, STARTS AT 400
04120C

08 1 SO0 &5 55 5 59 HEFHHEE R SRR R R AR AR R R SRR R RS
04140C

041%0 400 CALL SEARCH(X1,Y1,IVIS1,X2,Y2,IVIS2)

04140 CALL MOVEA (XINTER, YINTER)

04170 CALL DRAWA{X2,Y2)

04180 CALL UPDATE (XINTER, YINTER, X2,Y2)
04190C

04200C

04210C

04220 S00 RETURN

04230 END

04240C

042500

042600



Q27700 A 0 0 T
QA ZB00 S 40 0 0 0 3R
04270C
04300C
043100

04320C THIS IE THE SUBROUTINE USED TO UPDATE THE HMIN AND HMAX
04330C

Q0aX40C
Q43500
O TEOCA -0 30 T3 ST 00 3 B0 00 A B0 000 B0 4 B 00 0 B 0 0 B 40 B 0 0 0 06 B O O 0
LT g e e e e S

04380C

04390C

04400C

04410 SUBROUTINE UPDATE(X1,Y1,X2,Y2)
04420 COMMON/HEIBHT /HMAY (1024) , HMIN(1024)
04430 I1=INT{10.0#X1+512.5)

04440 I2=INT (10.0=X2+512.5)

04450 IF(Y1.6T.HMAX (I1)) HMAX (I1)=Y1
08450 IF(Y1,LT.HMINCI1}) HMIN(I1)=¥]
04470 IF(YZ.BT.HMAX (I2)) HMAX (I2)=y2
04480 IF (YZ.LT.HMIN(IZ}) HMIN(IZ)=YZ2
04450 IF (X1.EQ@.X2) 80 TO 40

04500 IF(I1.6T.I2) B0 TO 10

04510 B0 TOD 20

04520 10 ITEMP=I1

04530 I1i=I2

04540 12=ITEMP

04550 20 CONTINUE

04560 IDELTA=IZ2-I1

04570 IF(IDELTA.LE.1) BO TO 40

04580 Il=I1+1

04590 12=12-1

04400 DD 30 I=I1,I2

04610 XI=FLOAT (I}

08520 Y { {Y2=Y1) /(X2=X1) ) ((XI=512.5) %, 1=X1)+¥1
04430 IF(Y.GT.HMAX(I)) HMAX(I)=Y
044480 IF(Y.LT.HMIN(I}} HMIN(I)=Y

DALS0 =0 CONTINUE
04660 40 RETURN
04670 END

04 &80C

M44690C

“3700C



UHf¢uLlltiIlliiii*iiillii#iiilliﬂlﬂililIiililiiiiiIii**iiiiiiiﬁilliiilﬂl*i
087300

O/TAQC

o47500C

047&0C THIS SUBRDUTINE FINDS THE INTERSECTIDON FOINT

C4770C WITH A BINARY SEARCH

04780C

o870C

04800C
ﬂqﬂ1ﬂciﬂliilﬁniliiiiiiiiii*ﬂfiiiiﬁliuiiili*iilliﬂilllnilﬂiilii*iiili*ii*ui
n4EEGCiniiiﬁiilliiiiﬁfnliiitnﬂiliilniiiiiti*iiiiniiliiiiiiﬂiiiqﬂﬂ*iliiiinﬂ
04830C

CA4B40OC

04850C

04860 SUBROUT INE SEARCH(XX1,YY1, IVIB1, XX2, YY2, IVIS2)
04870 COMMON/HEIBHT /HMAX (1024) ,HMIN(1024)
04880+ /XY INTER/XINTER, YINTER
04890 Xim)Yx1

04500 Yim¥YYy}

04910 2=} X2

04920 Y2=YY2

04930 XO=XX1

04940 YOmYy1

04950 IFI(X1.EQ.X2) BO TO &
04940 80 TO 7

04970 & XINTER=X1

04980 YINTER=Y2

04990 80 TO 50

05000 7  CONTINUE

05010 SLOPE=(YZ-¥1)/(X2=X1)
05020 Il=INT(10.08X1+512.5)
05030 I2mINT(10.0#X2+512.5)
03080 10 IZ=(I2-11)/2+1I1

05050 XIZ=FLOAT(IX3)

05070 Y3Im(X3-X0) #BLOPE+YO
03080 IVIS3=]

05090 IF{Y3.LT.HMAX (I3).AND.Y3.BT.HMIN(IZ)) IVIS3I=0
05100 IF(IVIBI1.EQ. IVIS3Z) B0 TO 20
05110 IVISZ2=IvIS3

05120 I2=13

05130 Y2=Y3

05140 60 TO 3¢

05150 20 IVISI=IVIS3

051460 I[i=IX

Q5170 Yi=myY3

05180 30 CONTINUE

051790 IDELTA=TABS(I1-12)

Q5200 IF(IDELTA.NE. 1) BO TO 10
03210 IF{IVIB1.EQ.0) BD TO 40
05220 XI1=FLOAT{(I1)

05230 XINTER=(XI1-512.5)/10.0
05240 YINTER=Y1

05250 80 TO S0

05260 40 XIZ=FLDAT(12)

05270 XINTER= (X12-512.5) /10.0
05280 YINTERwYZ2

05290 S50 RETURN

05300 END

O5310C



05320C

0S5330C

OIS T AO0 T S 0 0 0 0 06 0000 000 B 00 0 0 0 00 0 T T 0 0 0 T 6 T 0 0 B 0 B T I T B 3 0
0S5350C

O53560C

OS5370C

053800 SUBROUTINE USED TO DRAW THE BORDER AND TO INSERT A DELAY
0S3IS900C

OS54 00C

05410C

OS54 200 8 800000000000 500 0003 3103 00 B0 B0 0 S T T S 00 B I B0 0 B B T S
OS4300

05440C

05450C

054560 SUBROUTINE BORDER

05470 CALL MOVEA(-51.15,-38.95)
05480 CALL DRAWA(-51.15,38.95)
05490 CALL DRAWA (51.1%5,38.93)
Q5500 CALL DRAMWAI(SL.15,-38.95)
05510 CALL DRAMWA(-S51.15,-38.93)
05520 RETURN

05530 END
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APPENDIX 4

Listing of the program used to generate Movie 1, D'alemberts Solution



ﬂﬂ1ﬂﬂiilﬁ*i**ﬂ*lilli'liiiil*ﬂi*iillilliiﬂiil*ii*ll*lliiﬂ**ﬂ*ilﬁ;ﬂ

QO020C
QO030C
DO0/0C
QOS0C
DOL0C
QO70C
QO80C
QOFOC
Q1000
0110C
0120C
0130C
014800
0150C
0160C
Q1700
0180C
Q1%0C

BREGDRY PAT SCANDALIS- SENIOR PROJECT/COMPUTER MODEL ING
DESCRIPTION: THIS PROGRAM IS THE FIRST IN A BERIES OF
COMPUTER MODELS BASED DN PHYSICS. THIS PRDGRAM MODELS A
VIBRATING BTRING. THIS PROGRAM DOES NOT SOLVE THE "WAVE
EQUATION". THIS PROGRAM BENERATES A " MOVIE " FRAME BY FRAME
ON A TEKTRONIX BRAPHICS TERMINAL. THESE INDIVIDUAL FRAMES
OF THE STRING*S MOTIDN WILL BE PHOTOGRAPHED BY A FRAME
CAMERA FRAME BY FRAME. THE PROSRAM USES D’ALEMBERTS SOLUTION
TO THE WAVE ERQUATION:

THIS SOLUTION REPRESENTE THE SUM DF THWO WAVES TRAVELING IN
OPPOSITE DIRECTIDNS.

Q20005 58 5555 RN 0 0 0 00 0 0 000 B0 0 A 0 B O

0210C
0220
0230+
Q240
OZ230C
0260C
0270C
0280
Q290
Q300
0310
0320
0330
Q340
Q350
Q380
0361
Q370
0380
Q390
Q400
0410
0420
0430
0430C
Q4600
O470C
Q480
0490
OS00
0S10C

PROGRAM STRING (INFUT,OUTPUT, TAPESL, TAPESZ, TAPES=INPUT,
TAPES=DUTPUT)

COMMON PI,V,XL,N
INFUT THE VELOCITY, HARMONIC NUMBER AND THE RUN TIME

PRINT#*," INPUT N, THE HARMOMIC NUMEER"

READ# , N

PRINT#,"ENTER THE INITIAL NUMBER OF STILL SECONDS"
READ#*, JO

Ji=JOw1B

JO=JOR3IE

PRINT#, "INPUT THE FPERIOD IN REAL TIME"

READ#®, PER

Va2 Ts. FINMPER)

PRINT#," THE VELDCITY IB : ",V

PRINT#*," INFPUT ITMAX, THE NUMBER OF SECONDS BEMNERATED"
READ#, ITHAX

IGUIT=ITHAX=18+J1

FPRINT#, "BETTER QUIT BEFDRE THE FRAME CDUNTER READS ", IQUIT
ITHAX=]THAX &4

PRINT#, "ENTER THE INITIAL TIME"

READ®, TO

BET INITIAL VALUES AND CONSTANTS
PI=3.141592&

T=TO
XL=F00.,0



R el i Nl (AaF Y- A RESE | & S FRESTES

00S30C
00540 DO 10 I=1, ITHMAX

00550 X=G, O

00S&0C

00S70C INITIALIZE THE GRAPHICS AREA, DRAW THE BOX
00SB0C

0OS90 CALL INITT(120)

00&00 CALL DWINDD({0.0,%900.0,-1.1,1.1)
00410 CALL TWINDD(42,962,200,717)
00620 CALL MOVEA(0.0,-1.1)

00&30 CALL DRAWA (0.0,1.1)

00&40 CALL DRAWA (900.0,1.1)

00&S0 CALL DRAWA (900.0,—1.1)

00440 CALL DRAWA(0.0,=1.1)

00470 CALL MOVEA(0.0,0.0)

00&80 CALL DABHA(900.0,0.0,3)

00&F0C

00700C INITIALIZE THE CURSOR

00710C

00720 Y=F (X, T)

00730 CALL MOVEA (X, Y)

00740C

007S50C CALCULATE AND PLOT A FRAME OF THE STRING
007&60C

00770 D0 20 J=1,450

00780 KmX+2

00790 Y=F (X, T)

00BOO CALL DRAWA(X,Y)

00810 20 CONTINUE

00820 T=T+1

00830 JI=b

00840 IF(T.EQ.1.0) JJ=J0

00BS0 DO 11 II=1,JJ

00BAO CALL BELL

00BTO CALL MOVEA(0,0,—0.75)

00880 CALL DASHA(0.0,0.0,3)

00BT0 11 CONTINUE
00700 10 CONTIMNUE

00901 CALL FINITT(0,0)

00910 STOP

00920 END

00930C

00F40 FUNCTION F(X,T)

00950 COMMON PI,V,XL,N

00F4L0 F{.S)# (SIN((NSPI#(X+VaT)) /L) +SIN( (N#PI# (X=V#T) ) /XL) )
00970 RETURN

0980 END
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APPENDIXI 5

Listing of the program used to generate Movie 2, Fourier Solution



A I B O B S T A S T B O R B
SJO200

LO0I0C

Q00040C GREGORY PAT SCANDALIS- SENIDR PROJECT/COMPUTER MODEL ING
QOOS0C DESCRIPTION: THIS PROGBRAM I8 THE FIRST IN A SERIES OF
000&0C COMPUTER MODELE BASED DN PHYBICS. THIS PROGRAM MODELS A
00070C VIBRATING STRING. THIS PROBRAM DOES NOT SOLVE THE "WAVE
QOOB0C EQUATION". THIS PROGRAM BENERATES A " MOVIE " FRAME BY FRAME
000%0C ON A TEKTRONIX BRAPHICS TERMINAL. THESE INDIVIDUAL FRAMES

00 100C OF THE STRING'S MOTION WILL BE PHOTOBRAFPHED BY A FRAME
o0110C CAMERA FRAME BY FRAME. THE PROGRAM USES D’ ALEMBERTS SOLUTION
00120C TO THE WAVE EQUATION:

00130C

00140C

Q0150C

001600

00170C THIS SOLUTION REPRESENTS THE SUM DF TWO WAVES TRAVELING IN
00180C OPFOSITE DIRECTIDNS.

001%0C

OO 2 ORI A e 0 W B T o O B O T A 0 B B 0 O B 0 0 O B
QO210C

00220 PROGRAM STRING ( INPUT, DUTPUT, TAPE&L, TAPESZ, TAPES=INPUT,
00230+ TAPE&=DUTPUT)

00240 COMMON PI,V,XL,N,H

Q0250C

00260C INPUT THE VELOCITY, HARMONIC NUMBER AND THE RUN TIME
00270C

00280 PRINT#," INPUT THE STRING VELOCITY"

00290 READ®, V

00300 PRINT#," INPUT N, THE HARMONIC NUMBER"

00310 READ#*, N

00320 PRINT#," INPUT ITMAX, THE NUMBER OF FRAMES GENERATED"
00330 READ+, I THAX

00340 PRINT#, "ENTER THE INITIAL HEIGHT DF THE STRING"
00350 READ#, H

00360 PRINT#, "ENTER THE INITIAL NUMBER OF STILL FRAMES"
00370 READ#, JO

00371 JO=J 02

00380 PRINT#, "ENTER THE INITIAL TIME"

00350 READ#,TO

00400C .

00410C SET INITIAL VALUES AND CONSTANTS

00420C

00430 PI=3. 1415926

00440 T=TO

00850 XL=900.0

004500

00470C THIS “DD" RESETS EACH FRAME

00480C

00490 DO 10 I=i, ITMAX

00500 X=0. 0

oOS510C



003200 INITIALIZE THE BRAPHICS AREA, DRAW THE BOX
DOS30C

00540 CALL INITT(120)

QOSSO0 CaLL mlﬂmiﬂ-ﬂ,?m-ﬂ,*—l-l. 1.1)
00560 CALL TWINDO(&2,962,200,717)
00570 CaLL MOVEA(0.0,~1.1)

00580 CALL DRAWA (0.0,1.1)

QOS50 CALL DRAWA(500.0,1.1)

00500 CALL DRAMA(900.0, -1, 1)
00610 CALL DRAWA(0.0,-1.1)

004620 CALL MOVEA(0.0,0.0)

004630 CALL DASHA (900.0, 0.0,3)
00&640C

00&S0C INITIALIZE THE CURSOR
00&6&0C

004670 YuF (X, T)

00480 CALL MOVEA(X,Y)

004700

00700 C CALCULATE AND PLOT & FRAME OF THE STRING
oOF10C

00720 DO 20 J=1,450

00730 X=X+2

CO740 YmF (X, T)

00750 CALL DRAWA (X, Y)

00760 20 CONTINUE

CO770 T=T+1

00780 JI=4

00790 IF(T.ER.1.0}) JJ=JoO

00800 DD 11 II=1,J3

00810 CALL BELL

o0B20 CAaLL MOVEA(O.0,=-0.75)

00830 CALL DASHA(0.0,0.0,3)

00840 11 CONTINUE
COBSO 10 CONTINUE

00851 CALL FINITT(0,0)
00B&O STOP

00870 END

00880C

DOBTO FUNCTION F(X,T)

DOF00 COMMON PI,V,XL,N,H

00910 P=0.0

00920 PARTSM=0. 0

00930 DO 10 I=1,N

00940 XI=FLOAT (I}

00950 ﬂH-E.DtH#EIHfII*FI!E.GJItIIiiz.ﬂiitFllui.ﬂl
00940 TAU=COS(XI#PI#VeT/XL)

00970 XLAM=SIN (XI#PIuX /XL )

DOFE0 P=AN®TAL® XL AM

00950 PARTSM=PARTSM+P

01000 10 CONTINUE

01010 F=PARTSM

01020 RETURN

01030 END
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APPENDIX 6

Listing of the program used to generate Movie 3, Modes of the Vibrating
Membrane



QOO L QT #5855 5 5 085 HHH SRR 0 R R T 0 0 0
000200

O00Z0C

00040C

QOOS0C BREGORY PAT SCANDALIS

Q00&0C SENIOR PROJECT

0007 OC PHYSICS

000BOC COMPUTER GENERATED MOVIES W/3-D GRAPHICS

00090C

00100

OO1LOCH S-S HEHE 000 ST DN 0 B30 I 00 0 00 B 0 0 00 06 0 0 0 6 0
Q0120C

00130C

001400

00 1 30T THE FIRST PART OF THE FROGRAM IS A DRIVER TO

001560C GENERATE THE DATA FOR THE TEST SURFACE.-

00170C

001800

00190C
QO2000 4 9598 H90 58 500 R R0 S 0 B0 0 0 B0 0 B 00 0 00 000 0 0 30 O 0 0 B 0

QOS2 1 O S 0 3 B 5 B 3 B 0 3 0 e B B A O O

00220C

00230C

00240 PROGRAM PATPLOT ( INPUT, DUTPUT, TAPES1, TAPESZ, TAPES=INPUT,
00250+ TAPE&=DUTPUT)

00260 DIMENSION X(2&,26),Y(28,28),Z(26,26)
00270 COMMON/POINT /X (26,26) ,Y (26,26),7(26,26)
00280C

00250C INITIALIZE THE ARRAYS

00300C

00310 DO 20 I=1,2&4

00320 DO 10 J=1,2&

00330 X(I,J)=I-14.

00340 ¥Y(I,J)=J-1&.

00350 10 CONTINUE
00360 20 CONTINUE

003700 INITIAL DATA IS INPUT

00380C

00350 PRINT#, "ENTER R, THETA,FHI,D, IFRAME"
00400 READ®, R, THETA,PHI , D, IFRAME

00410 ANX=2.0

00420 ¥YNY=1.0

00430 15 T=0.0

00440 DO 3000 K=1,140

00430 DO S50 I=1,2&

00440 DD &0 J=1,26&

00470 A=SING (I-1.0) #XNX#. 1 2585)

00480 B=SIN{ (J-1.0) #YNY#. 12546)

00490 C=COS ( { (XNX*##2+YNY#%2) ##.5) #T#, 17844)
00S00 Z(1,J)=B. OxARBAC

00510 &0 CONTINUE

00520 S0 CONTINUE

00530 TuT+1.0

00540 CALL INITT{120)

00550 CALL DWINDO(-31.15,51.15,-38.95, 38.93)
00540 CALL TWINDD({(O, 1023,0,7B80)

00570 CAaLL BORDER

00580 CALL BRAFIT(R, THETA,PHI,D, IFRAME)
00590 3000 CONTINUE

00L00 XNX=XNX+1.0

00610 YNYsYNY+1.0

00420 IF (XNX.EQ@.3.0) B0 TD 15

004630 CALL FINITT(0,0)

004640 STOP

00450 END
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