This Document was cached from the files found on the Analog Devices Web site location:

ttp://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html

SynthScript

SynthScript Specification R1.1.3

Gregory Pat Scandalis

GLOSSARY

dla*

Algorithm *

Allocation Order *

Allocated Algorithm Instance *

Control Pin *

Down L oadable Algorithm (DLA) *

Event *

Event Driven *

EventFilter *

Instance *

Palette *

Part *

Physical Model *

Pin *

State Variable *

StateProc *

SubAlgorithm *

SynthBuilder *

SynthCore *

SynthScript *

SynthStream *

Template *

Tick Size*

UnitGenerator *

CHAPTER O: Introduction

0.1 About SynthScript *
0.2 A Brief History of SynthScript *

0.3 Other documentsto refer to*

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (1 of 77) [1/22/2002 12:26:50 PM]

SynthScript
0.4 A Note about this document *

CHAPTER 1: A Tutorial Introduction

1.1 TheHeloWorld Oscillator Algorithm *

1.2 SynthScript I nstance Statements *

1.3TheHeloWorld Oscillator Algorithm in SynthScript. *

1.4 What happens after the algorithm isread into SynthCore? *

1.5 How doesthe public API address an algorithm? *
CHAPTER 2: A Second Example with Hierarchy

2.1 TheHelloworld Examplewith Hierarchy. *

2.2 TheHelloworld Example with Hierarchy in SynthScript *

2.3 What happenswhen a hierarchical algorithm isflattened in SynthCore? *
CHAPTER 3: A Third Example with Data

3.1 TheHelloworld Examplewith Data. *
3.2 TheHelloworld Example with Data in SynthScript *

3.3 What happensto data, in SynthCore? *
CHAPTER 4. SynthScript Files, High Level View

4.1 SynthScript Syntactic Hierarchy *
4.2 SynthScript Parsing *
4.3 Includefiles*
4.4 Encryption *
4.5 Pretty Printing *
CHAPTER 5: SynthScript Runtime Support

CHAPTER 6: SynthScript Constant Data Types

6.1 ControlPar *
6.2Int*
6.3 Real *
6.4 Object *
6.4.1 IntArray *
6.4.2 RealArray *

6.4.3 RomUG (memory Streaming) *

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (2 of 77) [1/22/2002 12:26:51 PM]

SynthScript
6.4.4 Event *

6.4.5List *

6.5 Instance*
6.5.1 InstanceNames *
6.5.2 Connectivity *
6.5.3 StateProcs *
6.5.4 Tags - representing extended data*
6.5.5 SampleRates *

6.6 Symbolic Reference *
6.6.1 Hierarchical references*

6.7 Algorithm & SubAlgorithm *

6.8 Preset *

6.9 Palette *

CHAPTER: 7 SynthScript Update Commands

CHAPTER 8: SynthScript Run Time Support Commands

8.1 Algorithm allocation *

8.2 MidiChannel Mute/lUnmute. *

8.3 Instance Probe/Unprobe, Mute/Unmute *
8.4 Simple Commands *

CHAPTER 9: Formal Grammar

9.1 Lexical Conventions*
9.1.1 Comments *
9.1.2 White Space *
9.1.3 Integer Constants *
9.1.4 Real Constants *
9.1.5 String Constants *
9.1.6 Identifiers *
9.1.7 Specia Characters *
9.1.8 Lexical Include *

9.1.9 Keywords *

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (3 of 77) [1/22/2002 12:26:51 PM]

SynthScript
9.1.10 Support for error handling *

9.1.11 Encryption *
9.1.12 Reading SynthScript from afile or from an interactive stream *

9.2 Parsing SynthScript *
9.2.1 Error handling in Parsing SynthScript *
9.2.2 BNF syntax for SynthScript. *

9.3 Pre-defined ControlParsin SynthScript *
9.3.1 Control Pars used in the representation of MIDI *
9.3.2 ControlPars provided by the Voice Allocator *
9.3.3 Control Par to Support NoteDur events *
9.3.4 ControlPar to Support Standard MIDI File events *
9.3.4.1 File channel, track and port meta-events *

9.4 Midi filerepresentation in EventList *

Other Reference Documents

Documentation for the R1.0 Unit Generator Set

Documentation for the Public API

Glossary
dla

The extension for afile that contains down loadable algorithms. A .dlafile may contain either a single algorithm
(Algorithm and Subalgorithms), a collection of Algorithms, a preset or a collection of presets, a palette of
algorithms and presets, a collection of palettes, or SynthScript runtime command language.

Algorithm
An Audio Signal Processing Algorithm. For legacy reasons the older keywords Patch and Subpatch will be supported through R1.5.

Algorithm is the hierarchical root of an algorithm. Allocated algorithm instances are constructed by starting from
the root algorithm, flattening the algorithm to its leaf UnitGenerator and EventFilter instances, and allocating all of
those instances. Algorithms are mapped to MIDI program locations, meaning that they are "stored" in MIDI space
at program locations which consist of a Bank MSB, a Bank LSB, and a Program location. Algorithms are
allocated on MIDI channels.

Allocation Order

The instances of UnitGenerators and EventFilters defined in a patch are allocated in the order that they are
instanced in the SynthScript. Thisisimportant because the allocation order determines the evaluation order.
Evaluation order in agorithms isimportant because feedback |oops create implied delay at some point in the loop,
depending on the order that the UnitGenerators in the loop are eval uated.

Allocated Algorithm Instance

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (4 of 77) [1/22/2002 12:26:51 PM]

SynthScript
A running (computing) instance of an algorithm.

Control Pin

Thisisapin on ahierarchical SubAlgorithm that can be used to enable/disable the SubAlgorithm from cal cul ation.
Down Loadable Algorithm (DLA)

An algorithm that has been loaded into SynthCore as a template and allocated as an allocated al gorithm instance.
Event

An object that is passed down a EventFilter chain. This object can contain any number of parameters, some of
which are common MIDI parameters.

Event Driven
Computation that responds to eventsin time.
EventFilter
An event driven computation unit that is used to process control data.
Instance
In SynthScript, algorithms consist of instances of UnitGenerators, EventFilters, AudioNets and EventNets.
Palette

A collection of Algorithms, SubAlgorithms and presets that share a MIDI program space. SynthCore provides a
default Palette,

Part

A part corresponds roughly to a MIDI channel. SynthStreams have 16 parts which can be mapped to MIDI
channels.

Physical M odel
An algorithm that ssmulates a physical sound generation process.
Pin
A connection point on a UnitGenerator or EventFilter.
State Variable
Variablesthat are part of a UnitGenerator or EventFilter that reflect its current state.
StateProc
A procedure that can set the value of a state variable for a particular instance of a UnitGenerator or a EventFilter.
SubAlgorithm
A hierarchical element of a patch.
SynthBuilder
Staccato’sinterna (for now) tool for authoring SynthScript algorithms.
SynthCore

Staccato’ s realtime software algorithmic and wavetable synthesis engine.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (5 of 77) [1/22/2002 12:26:51 PM]

SynthScript

SynthScript
Staccato’ s interchange format for describing algorithms.
SynthStream

Simply, a SynthStream is an input to the system mixer, where Synthesis algorithms can be allocated (on parts
which are roughly MIDI channels). On the WinX platform, the benefit of allocating algorithms on different
SynthStreams, is that they can be allocated as DirectSound 3-D buffers that can then be controlled from the
DS3-D APls.

Template

An algorithm that has been read into SynthCore is stored as atemplate. This template can be used to allocate
running (computing) instances of the algorithm. Templates are stored either in the default palette, or in a named
palette.

Tick Size
The number of samples that are calculated for each calculation loop. This corresponds to the size in samplesin an
AudioNet that connects two UnitGenerators.

UnitGenerator

An Audio Signal Processing Element. Thisis aterm that was coined by Max Mathewsin his MusicX series of
programs.

cHaPTER O: | Nntroduction

SynthScript is atext based interchange format that Staccato Systems Inc has designed to represent downl oadable audio
signal processing algorithms or DLAs. DLAs that are defined in SynthScript can be "allocated" and controlled by
Staccato’ s Software Synthesis Engine, SynthCore. Examples of possible DLA algorithms are Physical Models, such asa
feedback distortion guitar, or a car engine. Other possible algorithms are familiar signal processing units such areverb or
aflanger.

Staccato has developed atool known as SynthBuilder that is used to author SynthScript algorithms. SynthBuilder
communicates to Synthcore using SynthScript. On the WinX platforms, this interactive connection is accomplished with
aCOM interface in SynthCore. SynthBuilder can also save an authored algorithm as a Down Loadable Algorithm file,
known asaDLA file (.dla). This DLA file can be loaded into SynthCore independent of the SynthBuilder authoring
environment.

SynthScript’sdesign isin part influenced by the design of the DLS standard, and because of thisis MIDI-centric.
Note that other tools may one day exist that also generate SynthScript.

0.1 About SynthScript

SynthScript is an interchange format. An algorithm described in SynthScript primarily consists of instantiations of signal
processing and control objects, connectivity between these objects, and data declarations. The following are some of the
features of SynthScript.

o SynthScript isfree format text. This allows users to edit raw SynthScript if necessary. Also other authoring tools
can easily be developed that emit SynthScript.

« It provides a compact representation for connectivity between instances of signal processing and control units.
« It provides a compact representation for assigning values to the state variables of signal processing and control

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (6 of 77) [1/22/2002 12:26:51 PM]

SynthScript
units.

« It provides a compact representation for binding control to the state variables of signal processing and control
units. Algorithms can be controlled with common MIDI controls as well as user defined controls that can be
accessed from the API.

« It provides datatypesfor representing data that is a part of an algorithm.

« It provides arepresentation for mulitple algorithms as well as a representation of hierarchical processing units
known as " SubAlgorithms".

« The allocation system supports “flattening” of Algorithms and SubAlgorithms, which is analogous to link
resolution in programming languages.
« It provides arepresentation of algorithms that share a common program change space, known as "Palettes’.

« Itiscompatible with MIDI. Algorithms have associated program change numbers, and can be allocated with a
simple MIDI program change. Algorithms can be allocated on MIDI channels and controlled with common MIDI
controllers.

» Thereisa SynthCore API that can be used to load a SynthScript file, allocate the algorithms defined in a
SynthScript file, and manipulate the exported controllers of an allocated agorithm.

« A tag mechanism is provided to support user defined extensions to SynthScript. This mechanism can be use to
represent things such as graphical coordinates or any other user defined value.

« A simple XOR based encryption mechanism is provided for encryption/decryption of SynthScript files.
0.2 A Brief History of SynthScript

The original NeXT based version of SynthBuilder was a graphical editing program that made direct API callsto the
NeXT Music Kit, which in turn rendered audio algorithms on the NeXT computer’ s Motorola 56k DSP. With this
version of SynthBuilder it was possible to author algorithms, but there was not an easy way to export the algorithmsin a
runtime format that was independent of SynthBuilder. Further the Synthesis engine was not portable because it was
coupled to the 56k.

SynthScript was designed as away to decouple the synthesis engine from the authoring tool. Further we envisioned
SynthCore as a portable synthesis system that would use host based computing resources. Because algorithms are
authored in SynthScript, they can be run on aversion of SynthCore that has been ported to different platforms.

Thefirst version of SynthScript was developed in the spring 1996 at Stanford University as a part of the Sondius
program. An early version of SynthCore and SynthScript were demonstrated at Stanford’s CCRMA in May of 1996.

Nick Porcaro assisted with theinitial design of SynthScript.

The connectivity and data format of SynthScript is similar to CAD formats, such as Verilog or VHDL, that are used to
exchange logic design data.

The R0.7 version of SynthScript, dating to the 1996 pre Staccato time frame only supported connectivity, and asingle
algorithm.

The R0.8 version of SynthScript that dates to the Oct 1997 time frame had limited support for data, and still only
supported a single algorithm.

The R0.9 version of SynthScript that dates to the April 1998 Concerto Prototype is uses the list and array paradigms for
data, and is upwardly compatible with the R1.0 version of SynthScript.

The R1.0 version of SynthScript adds an include file mechanism, a new datatype "Event", support for reading sound
files (.wav), the Pal ette mechanism, support for probing, and support for Presets.

Future versions of SynthScript will probably support Scenes (a predefined collection of alocations), and an event
processing language.

0.3 Other documentsto refer to

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (7 of 77) [1/22/2002 12:26:51 PM]

SynthScript

Note that there are several other documents that should be referred to when reading this spec.

This spec does not discuss in depth, the signal processing and control units which are known respectively as
UnitGenerators (aterm coined by Max Mathews in the late 50s as a part of his Music line of programs), and
EventFilters. The UnitGenerators and EventFilters that are part of R1.0 are defined in the document "UgDocR1.0.doc".

This spec does not discuss in depth the SynthCore public API that can be used to load, alocate and control SynthScript
algorithms. That API is discussed in the document " SDK publicAPI.doc".

0.4 A Note about this document

This document approaches the specification of SynthScript at 3 levels. Thefirst level consists of atutorial in the form of
anumber of examples. The second level consists of qualitative explanations of each portion of the syntax and semantics
of SynthScript. The last level isthe formal syntax of SynthScript.

chapTer 1 A Tutorial I ntroduction
1.1 TheHeloWorld Oscillator Algorithm

Let us begin with a quick introduction to SynthScript. The following example will show some of the essential elements
of a SynthScript algorithm. Later, details will be explained about the programming model that SynthScript presents, as
well as the run time system that supports this. Note that through out this document, I’ll use SynthBuilder algorithms as
examples. However, this document is not intended to be a SynthBuilder tutorial.

Thisis an example of avery simple Synthesis algorithm, known as an "Algorithm". This very simple example doesn’'t do
very much. It's asimple sine wave oscillator, and the frequency of the oscillator can be tuned by moving a slider on the
screen. What is interesting about this example, isthat it demonstrates some of the things that are common to most
algorithms, and how those things are represented in SynthScript.

= = Helloworld.sb {SR=22050 T5=32 MSB=0 LSB=50 PGM=1} C:\My Docu... [M[=]E3

Eile Edit Farmat Toolz ‘Windows Sound DEMO Help

|2 @)

This Qscillator recaives
“Mote" events, and
responds to events that
caontain the ContralPar
"OscillatorFreguency™

Hello Word! This simple

Fatch is an oscillatar that @
can be controlled by a
slider)

s
B]

This slider serxds
"Mote" events that
contain the ControlPar
"DscillatorFrequency”

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (8 of 77) [1/22/2002 12:26:51 PM]

SynthScript

TheHelloWorld Oscillator Algorithm

Here are some things to notice about this agorithm:

« Part of the algorithm, the oscillator and the speaker, deals with the audio processing chain and is computed
synchronously at the algorithm’s sampling rate. Notice that the oscillator and speaker are connected or "wired"
together with what is known as an "AudioNet".

« Part of the algorithm is used to "control” the audio processing chain, the slider. The control portion of the
algorithm is computed asynchronously and is "event driven”. Notice that the slider and the oscillator are "wired"
together with what is known as an "EventNet".

« Thedlider object sends "events' when it is moved. Events are very fundamental to how SynthCore works. An
event in SynthCore is simply an object that is passed down a chain of EventNets. This event object can contain a
list of any number of control parameters known as ControlPars. The Control Pars that are part of an event object
have types (such as Redl, Int, RealArray, IntArray, List aswell as other possible data types) and values. I'll
discuss SynthCore/SynthScript datatypes in greater detail later. In this example, the dlider is sending events that
contain the Control Par "freq", which is of type Real, and contains values such as 440.0.

« A dlider object can be specify the Control Par that is inserted into events that it sends. For examplein this
algorithm a dlider is sending the " OscillatorFrequency” Control Par (oscillator frequency parameter).

« Anoscillator object also can be used to specify the Control Par that it responds to when it receives events. We say
that the ControlPar " OscillatorFrequency"” has been bound to the StateProc "freq" on the oscillator. StateProcs will
be explained more later, but can be thought of as exposed control pins on an object that can have their states set
from some other parameter.

« Also notice that the algorithm itself has afew useful properties aswell. There is some information displayed in the
title bar of the algorithm that indicates the sample rate that the algorithm is running at, the size of a computation
tick (thiswill be explained later in detail), and the program location that the algorithm has been assigned to. The
program location makesit possible to alocate copies of this algorithm on MIDI channels viaa simple MIDI
program change.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (9 of 77) [1/22/2002 12:26:51 PM]

SynthScript

= * Helloworld.sh {SR=22050 T5=32 M5B=0 LSB=50 PGM=1} C:\My Docu...

Eile Edit Fommat Toolz ‘Windows Sound DEMO Help

h (| A |6 TR |22 ()

This slider serxds
"Mote" events that
contain the ControlPar
"OscillatorFreguency”

This Oscillator receives
“Mote" events, and
responds to events that
caontain the ContralPar
"OscillatorFrequency”

e

Hello Word! This simple

Fatch is an oscillator that @
can be controlled by a
slider)

1.2 SynthScript Instance Statements

Ok, so how isthis represented in SynthScript? We need to start with a short discussion of one of the fundamental
constructs in SynthScript, an instance statement. An instance statement is SynthScript’s compact notation that describes
when an algorithm is allocated, how to allocate an instance of one of its objects, the object’ s connections to other
objects, the initial values passed to the object’ s StateProcs, and the binding of ControlPars to the object’ s StateProcs.
Here is the instance statement for the oscillator in our example.

oscgUG MyGsci |l | at or
(out =oscgUGQut, control =slider NFQut,
[anp=0. 5,
freq=440. 0: Gsci | | at or Frequency]
);

The first token in the instance statement declares the class of the object that isto be allocated. In this case, we are
allocating an instance of an oscgUG object. The second token is a unique identifier for this instance of the object.

Next, in parenthesis, you will find declarations for connectivity, and declarations for state. Immediately after the open
parenthesis, you will find alist of assignment statements that describe networks that the object is connected to. These
networks can be either AudioNets, or EventNets. In this case, MyOscillator has a pin called "out" that is connected to an
AudioNet called "oscgUGOut", and another pin called "control” that is connected to a EventNet called "sliderNFOut".

Next you will find in square brackets a"vector" of StateProcs, assigned to initial values, and sometimes bound to
ControlPars. First there is a StateProc called "amp” which isinitialy set to avalue of 0.5. From UgDocR1.0.doc we can
find that this StateProc sets the amplitude (volume) of this oscillator, and that it ranges from 0.0 to 1.0. Next thereisa
StateProc called freq, which isinitially set to 440.0, and is bound to a Control Par called OscillatorFrequency.

Finally you will find a“;’ character which isthe termination of the instance statement.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (10 of 77) [1/22/2002 12:26:51 PM]

SynthScript

SynthScript algorithms consist of a series of instance declarations, some of which are object instances, and some of
which are data.

1.3 TheHeloWorld Oscillator Algorithm in SynthScript.

On the next page, you will find the complete SynthScript description for the simple HelloWorld algorithm, along with
extensive comments describing the notation in the algorithm. Here are a few things to notice about the SynthScript
description.

o Itsfreeformat text
« Comments can be entered with standard ¢, c++ notation /* */ and //.

« Note that when SynthScript isread into SynthCore it is validated syntactically with the SynthScript Parser. If
errors are detected they are indicated with error messages such asthis:

(0000028) o0scgUG MyGscil | ator (0000029) (out=0scgUlut, ; control =sliderNFQut, *
parse error at line [0000029] between <,>, and <;>.

(0000030) [anp=0.5, (0000031) freqg=440.0: Cscill atorFrequency, (0000032) phase=0. 0,
(0000033) trace=0](0000034));

Synt hCore: The SynthScript patch HelloWrld was read,
0 warnings, 1 errors.

/[* This is an algorithmcalled Hell oWrl d.
This is a SynthScript Version 1 file.
The algorithmis running at 22k sanmpling rate,
The algorithmis assigned to program |l ocation 0/50/0.
This neans that a sinple M D program change to bank 50, program 1
will direct SynthCore to allocate and instance of this algorithm
[*
Al gorithm Hel | owbr | d([Ver si on=1,

Sanpl i ngRat e=22050,

Ti ckSi ze=32,

BankMsSB=0,

BankLSB=50,

Progranrl])
{ /1 begin HelloWrld!
/1 GCscillatorFrequency is a Control Par that will be used in
/1 this algorithm
Control Par Gscill at or Frequency;
/'l EventNet that connects the slider to the oscillator

Event Net slider NFQut ();

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (11 of 77) [1/22/2002 12:26:51 PM]

SynthScript
/1 Audi oNet that connects the oscillator to the speaker
Audi oNet oscgUGQut ();
/1l This is an instance of an oscillator
oscgUG MyGsci | | at or
(out =oscgUQut ,
cont r ol =sl i der NFQut ,
[anp=0. 5,
freq=440. 0: Gsci | | at or Frequency]
);
/1 This is an instance of the speaker
out 2sunJG MySpeaker
(i n=oscgUcCut ,
[beari ng=0. 0,
scal e=1. 0]
)
/1 This is an instance of the slider. It is exported
/'l so that it can be accessed and controlled with the
/1 SynthCore API. Notice that the instance nane
/1 is not just a plain token, it's a quoted string.
[l This will allow for a nice name on an exported U
EXPORTED nunber Var NF "My Freq Event Slider"
(out =sl i der NFQut ,
[par= Oscill at or Frequency,
initialize=1,
max=5000. 0,
m n=0. 0,
real Val ue=1913. 58,
trace=0]);

} // end of Hell oWwrld!
1.4 What happens after thealgorithm isread into SynthCor e?

When an algorithm isread into SynthCore its not actually computing. The process of reading an algorithm into
SynthCore only creates a template assigned to a MIDI program location that can be used to allocate multiple copies of
the algorithm. The algorithm must be allocated in order for it to begin computing. An algorithm can be allocated one of 3
possible ways:

« A MIDI program change

o A procedure call that is provided in the SynthCore AP

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (12 of 77) [1/22/2002 12:26:51 PM]

SynthScript
« A SynthScript command statement.

The SynthScript command that will allocate this algorithm on MIDI channel number one looks like this:
Synt hstr eamAssi gnnent (M di | nChannel =1,

Bank MSB=0,
BankLSB=50,

Progranel);

Note that allocation commands can be included in a SynthScript file so that the SynthScript file is self allocating.

When an algorithm is allocated, the template is used as guide to create instances of objectsin SynthCore that will do the
actual computation of the algorithm. The StateProcs of these instances are initialized with the values defined in the
SynthScript file, Also, ControlPars are bound to these StateProcs based on what is defined in the SynthScript file.

An important detail is that instances of objects are allocated in the order that they are defined. Also StateProcs are
evaluated in the order that they are defined. Finally any datathat is a part of the algorithm is stored in the template, and
each instance of the algorithm references this single copy of the data.

Because SynthScript supports hierarchical descriptions of algorithms, a significant part of the allocation processis
flattening the hierarchy of an agorithm into allocated running objects. This flattening processis similar to linking in
conventional programming languages. The example in the next chapter will demonstrate a hierarchical algorithm.

1.5 How doesthe public API address an algorithm?

This document will not attempt to cover deeply how the public API isused. However, itsimportant use this example to

illustrate a few points about the public API. The public API isminimal. The goals of the Public API areto initialize and
terminate SynthCore, to load algorithms, and to allocate and deallocate algorithms, and to set/get exported controllers of
algorithms.

Once the algorithm isloaded, and allocated, it is possible, viathe API to get/set the values of exported controllersin the
algorithm (recall the EXPORTED keyword associated with slider objects). The main point to take from this, isthat all of
the functionality of an algorithm is defined in the algorithm itself, and this functionality can be controlled from the
algorithm’ s exported control interface.

Below is a screen shot from one of the Staccato SynthCore Control Panels. This control interface was constructed by
calling the public API to load the HelloWorld agorithm, and then set/get values associated with the exported controller
"My Freq Event Slider".

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (13 of 77) [1/22/2002 12:26:51 PM]

SynthScript

Helloworld

cHapTer 2 A Second Example with Hierarchy
2.1 TheHelloworld Examplewith Hierarchy.

Lets do a second example that demonstrates how hierarchy works. Hierarchy allows "Algorithms' to be constructed from
primitives as well as hierarchical elements known as " SubAlgorithms'. Here is the original HellowWorld agorithm
modified so that there are 3 instances of a SubAlgorithm that contains the oscillator. Note that in SynthBuilder each
hierarchical level of the algorithm is a separate document.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (14 of 77) [1/22/2002 12:26:51 PM]

SynthScript

= HellowWorldHierarchy_sb {SR=22050 T5=32 MSB=0 LSB=50 PGM=1} C:\My ... [A[= 3

File Edit Fomat Tool: ‘Windows Sound DEMO Help

v || 4 58| TR| =2 0,

These Scales will The Oscillatar is now in a
multiply the CantrolPar hierachical subpatch, and is
"OscillatorFrequency” instanced 3 times.

This slider serds by 1.5.

"Mate" events that . | ey

contain the CantrolPar

"OscillatorFreguency”
eI
——= (I
'.I I P b

Hello World with Hierarchy! This simple Patchis 3
hierarchical oscillators that are tuned to a perfect

5ths, and all three oftheir frequencies can he
controlled by a slider

Thetop level patch for HelloworldHierarchy.

= subpatch.sb{SR=22050 T5=32 MSB=0 LSB=50 PGM=1} [subpatch] [2 of 3... [MI[=] EI

File Edit Farmat Toolz ‘Windows Sound DEMO Help

O[] @)

This slider serxfs This Oscillat)
"Mote" events that "N::nste"secx!'e?tusr {::;Eﬂ@s
contain the ControlPar ¥ F.UF. :

responds to events that
contain the ControlPar
"DscillatorFrequency”

"“Yolume",

In synthBuilder, the first MIDI ﬁ]h
pin is th ContralPin, The
ContralPin is the pinthat is

used to enablesdizahble
computation.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (15 of 77) [1/22/2002 12:26:51 PM]

SynthScript

The oscillator SubAlgorithm for HelloWorldHierar chy.

The hierarchical SubAlgorithm uses special elements called "pins’ to establish connectivity between the lower and upper
levels of hierarchy. One of the Event pins that appearsin a SubAlgorithm must be designated as the ControlPin. Thisis
the pin that will be able to respond to enable/disable ControlPars in events that are sent to the pin.

Hierarchy provides a powerful mechanism to encapsul ate sections of an algorithm. Some of the benefits of using
hierarchical elements are:

« Hierarchical elements may be instanced multiple times, allowing SynthScript files to be more compact.
« Infinite levels of hierarchy are supported.

« Hierarchical elements may be shared by different algorithms. The definition of SubAlgorithms within a palette
may be shared by all patchesin the palette. This means that a single SubAlgorithm called "reverb" can be
instanced in different patches, but defined in the palette only once. Further, all datathat is defined in ahierarchical
SubAlgorithm is shared by all instances of the SubAlgorithm.

« Each hierarchical element can have its own sampling rate and tick size.

« SubAlgorithms may be enabled or disabled for computation. This allows portions of an algorithm to be shut down
for computational savings. Further the voice allocator has specific support to automatically enable/disable
SubAlgorithms. More about the voice allocator later.

2.2 TheHelloworld Examplewith Hierarchy in SynthScript
/1 This is the SubAl gorithmfor the oscillator

/1 Notice that the SubAl gorithm has an audio Pin and
// a MDI pin. The MDI pin " control " has been

/1 designated as the ControlPin. This is the

/1 pin that can respond to enabl e/ di sabl e

/'l control Par anet ers.

/1 Also notice that the SubAl gorithm can have its

/1l own sanpling rate and tick size.

SubAl gorithm Osci |l | at or SubAl gorithm (Audi oNet oscAudi oQut,
Control Pi n SubAl gorithnControl,

[Sanmpl i ngRat e=22050,

Ti ckSi ze=32])

{ /1 begin GCscillatorSubAl gorithm

/1 Control Pars can be declared at any hierarchical |evel, and
/'l can even be duplicated between hierarchal |evels.
/1 This is so that SubAlgorithnms are self contained.
Control Par Gscill at or Frequency, Vol une;

/1 Network fromthe slider

Event Net MyFreqEvent Sli derQut ();

/1 Network fromthe nerger

Event Net mi di MergerQut ();

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (16 of 77) [1/22/2002 12:26:51 PM]

SynthScript

/1 This merges the hierarchical in, and the
/1 outputof the slider.
mer ger NF aMer ger (out= nidi MergerQut,
i n1=MyFr eqEvent Sl i der Qut,
i n2= SubAl gorit hnContr ol
[i nput Count =2]);
/1l This is a slider that is nested in the hierarchy
/1l of the patch. Once the patch is flattened there
/1 are actually 3 instances of this slider. Their nanes
/1 are Gscillator_1/My/Vol uneSlider, GOscillator_2/MWVol unesli der,
/1 GCscillator_3/ MyVol uneSli der
EXPORTED nunber Var NF
MyVol uneSl i der (out=MyFreqgEvent Sl i der Cut ,
[par =Vol une,
initialize=1
max=1. 0,
m n=0. O,
r eal Val ue=0. 5]) ;
oscgUG MyGsci | | at or
(out = oscAudi oQut, control = nidi MergerQut,
[anp=0. 5,
freg=440. 0: Gsci | | at or Fr equency]
)
} // end of GscillatorSubAl gorithm
/1l Here is the top |l evel patch.
Al gorithm Hel | owor| dHi er ar chy([Ver si on=1
Sanpl i ngRat e=22050,
Ti ckSi ze=32
BankM5B=0,
BankLSB=50,
Progranel])
{
/1l This is the ControlPar that is for frequency
Control Par Gscill at or Frequency;

/! Here are the network decl arati ons. Event that

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (17 of 77) [1/22/2002 12:26:51 PM]

SynthScript

/'l hierarchcal networks are declared at the

/1 highest hierarchical |evel where they appear.
Event Net MyFreqEvent SliderQut2 ();

Event Net scal eParamNF2Qut () ;

Event Net scal eParamNFQut 2 ();

Audi oNet add3UcQut ();

Audi oNet SubAl gorit hmAudi oPin ();

Audi oNet SubAl gori t hmAudi oPi n2 ();

Audi oNet SubAl gori t hmAudi oPi n3 ();

/'l Here are 3 instances of the Oscillator SubAl gorithm
/1l Notice that the pins on the SubAl gorithminstance
/1 are the nanes of the pins defined in the SubAl gorithm
Gsci | | at or SubAl gorithm

Gscillator_1 (oscAudi oQut =SubAl gori t hmAudi oPi n2,
SubAl gori t hnCont r ol =scal ePar amNFQut 2,

[enabl ed=1]);

Gsci | | at or SubAl gorithm

Gscillator_2 (oscAudi oQut =SubAl gori t hmAudi oPi n3,
SubAl gori t hnCont r ol =MyFr eqEvent Sl i der Qut 2,

[enabl ed=1]);

Gsci | | at or SubAl gorithm

Gscil lator_3 (oscAudi oQut =SubAl gori t hmAudi oPi n,
SubAl gori t hnCont r ol =scal ePar amNF2Qut ,

[enabl ed=1]);

I/ This is the nmixer

add3UG

add3UG (out =add3UCQut ,

i n1=SubAl gori t hmAudi oPi n3,

i n2=SubAl gori t hmAudi oPi n2,

i Nn3=SubAl gori t hmAudi oPi n) ;

out 2sumJG

out 2sunJG (i n=add3UCCut ,

[scal e=1.0]);

/1 Continued on the next page .

EXPORTED nunber Var NF

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (18 of 77) [1/22/2002 12:26:51 PM]

SynthScript
MyFreqEvent Sl i der (out=MyFreqEvent Sl i der Qut 2,
[par =Csci | | at or Fr equency,
initialize=1
max=500. 0,
m n=0. 0,
real Val ue=271. 60493]) ;
scal ePar anNF
scal ePar anmNF (out =scal ePar anlNFQut 2,
i n=MyFr eqEvent Sl i der Qut 2,
[par I n=Csci | | at or Frequency,
par Qut =Csci | | at or Frequency,
scal e=1. 5,
op="mul"]);
scal ePar anNF
scal eParamNF2 (out =scal ePar anNF2Qut ,
i n=scal ePar am\NFCut 2,
[par I n=Csci | | at or Frequency,
par Qut =Csci | | at or Fr equency,
scal e=1. 5,
op="nul ",
trace=0]);

} // End of patch Hell oWrl dHi erarchy

2.3 What happenswhen a hierarchical algorithm isflattened in SynthCore?

As mentioned previously, when an algorithm isread into SynthCore its not actually computing. The process of reading
an algorithm into SynthCore only creates atemplate assigned to a MIDI program location that can be used to allocate
multiple copies of the algorithm.

When an algorithm is allocated, it is flattened. This means that beginning from itsroot, the algorithm is traversed depth
first recursively until all instances and SubAlgorithms have been visited. Along the way, UnitGenerators and
EventFilters are alocated and connectivity is resolved. Connectivity resolution is accomplished with the assistance of a
connection stack in much the same way that programming languages handle argument passing to subroutines.

As mentioned in the previous chapter, instances of objects are allocated in the order that they are defined. Thisistrue for
hierarchical instances as well.

Several special points are worth mentioning

» Two mechanisms are provided to switch on and off the computation of hierarchical SubAlgorithms. All
hierarchical SubAlgorithms have a StateProc called "enabled" that can be bound to a ControlPar, and can be used
to switch on and off the computation of the SubAlgorithm and all of its child SubAlgorithms. Also if one of the
MIDI pinsleading into a SubAlgorithm is designated as the "ControlPin", and if an event is passed to this pin with
aphrase status of phraseEnd, then the SubAlgorithm and all of its child SubAlgorithms will be disabled from

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (19 of 77) [1/22/2002 12:26:51 PM]

SynthScript
computing.

« Instances of objects receive hierarchical names when they are flattened. Hierarchical names areformed asa‘/
separated "path” list of instances, much like Unix file system path names. Notice in the previous example, each
instance of the dider that isin the oscillator SubAlgorithm has a unique name, Oscillator _1/MyVolumeSlider,
Oscillator_2/MyVolumeSider and Oscillator _3/MyVolumeSider Hierarchical names are important because the
API can be used to access a controller by name. The name that is passed to the APl may be a hierarchical name.
Also StateProcs can be assigned to a symbolic name. This symbolic name may be a hierarchical name.
Hierarchical names will be discussed in greater detail in the section about symbolic references

« SubAlgorithms do not have instances of networks that are connected to pins that lead in and out of the
SubAlgorithm. Thisis because the network is allocated at the highest level in the hierarchy of the patch. However
the pins are declared as a part of the interface of the SubAlgorithm (see the example).

cuapter 3 A Third Example with Data

3.1 TheHelloworld Example with Data.

Lets do athird example that demonstrates the use of data. There are anumber of datatypesin SynthScript. Hereisa
short summary of the data Typesin SynthScript.

Int —A 32 bit integer value (long)

Real — A 64 bit floating point value (double)

Objects— Several objects exist. Internally an object is

IntArray - An array of 32 bit integers (long)

RealArray — An array of 64 bit floating point values (double)

RomUG — An array of A 32 bit floating point values (float)

String - An array of characters. (char)

Event — An array of ControlPars and values. Thisis an event object.

List — A hierarchical list of objects, specific lists are defined by convention
EventList — A list of time stamped note events.
LookupTable—A list used for one dimensional lookups.
Envelope — A list used to define an envelope for en envelope handler.
Partials— A list of harmonic partials.

I nstance — Instance is actually an object, and can be passed to StateProcs.

Typicaly dataisinstanced in the SynthScript so that it can be passed to StateProcs, either implicitly (proc = value), by
symbolic reference, or by reference in an event. The following demonstrates both an implicit assignment of data, and a
symbolic assignment.

Real Array ankExanpl eReal Array = {1.0, 2.0, 3.0};
SomeUG MyUG

(in = netl, out = net2,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (20 of 77) [1/22/2002 12:26:51 PM]

SynthScript

/1l This StateProc is assigned to an inplict Real Array

/1 and is bound to a Control Par call ed aReal ArrayPar

/1 that can be used to pass a reference to a Real Array
[aStateProc = {1.0, 2.0, 3.0}:aReal ArrayPar,

/1l This StateProc is assigned to synbolic reference to

/la Real Array, and is bound to a Control Par called

/1 anotherReal ArrayPar that can be used to pass a reference
/1l to a Real Array

anot her St at eProc = anExanpl eReal Array: anot her Real ArrayPar]);

A very powerful datatype in SynthScript is List. List can be used to store an arbitrary hierarchical list of objects. The
members of alist can be accessed and passed by reference in a ControlPar with the use of the indexNF EventFilter. List
can be used to construct arbitrarily complex "data structures’.

i HellowWorldwithD ata_sb {SB=22050 T5=32 M5B=0 L5BE=50 PGM=1} C:\My Documents\SynthScriptDo._. M [=] 3

File Edit Farmat Toolz ‘wWindowse Sound DEMO Help
S AR Ll S =)

This patch contains alist of 3 RomUGs that are populated fram

send note events to
trigger the RomUG IntMemarySoundtumber? = {"chawindowsiTadaway");
readOnce RomUG InkemorySoundiumberz = {"chwindowsiLogoffiway'y;
- RomUG InkemarysoundMumbers = ciwindowshChimesway™y;
"q.... i J_*ﬁ List SoundList = InMemorySoundtumber
b= “:-_' InkdemorysoundMumber2
| InkAemoryzoundtumbers ;

1l
T

I-Um e

This read once will be

Thisalideris a3 passed a controlPar that
position switch to contains a reference to
select awavetahle different RomlGs.

fram the list

P

4] [

Here isthe HelloWorld algorithm modified so that there are 3 RomUGs that are populated from sound files. These 3
RomUGs are collected together into alist, that can be indexed with the indexNF EventFilter. This algorithm uses one
dlider with avalue 0..2 to select which RomUG to pass to the readOnceUG. It uses another slider to trigger the
readOnceUG.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (21 of 77) [1/22/2002 12:26:51 PM]

SynthScript
A Read Oncethat is passed referencesfrom a List of RomUGs.
3.2 TheHelloWorld Example with Data in SynthScript
/'l gps 4/21/99
/1 This is an exanple patch to show
/1 how data is represented in SynthScript.
/1 This patch will show how WaveTabl e Data can
/1l be stored in a data type called "RonJG'
/1 which is an in nmenory array of sound file data.
/11
I/ Alist of RonGs is defined, and then individual
/1 RomJGs can be selected fromthe list using the
[1 1istlndexNF.
Al gorithm Hel | owbr| dWt hDat a([Ver si on=1,
Sanpl i ngRat e=22050,
Ti ckSi ze=32,
BankMsB=0,
BankLSB=1,
Progranel])
{
Control Par waveTabl el ndex, // Used to select a particular RomJG
keyNum // This is a MD keyNum its used to
/1 trigger the readOnce
/'l These 3 RonlJGs are popul ated from Mono sound files
/1 1t is inportant to note that the data that is
/1 stored in these RonUGs is allocated in the tenplate ONLY
/1 Al instances of this algorithmrefer back to the data

/1 in the tenpl ate.

RonUG | nMenor ySoundNunber 1 {"c:\My Docunent s\ Tada. wav"};

RonmUJG | nMenor ySoundNunber 2

{"c:\ My Docunent s\ Logoff.wav"};
RonJG | nMenor ySoundNunber 3

{"c:\ My Docunent s\ Chi nes. wav"};
Il Here is a list of RomJGs

Li st SoundFileList = (I nMenorySoundNunber 1

I nMenor ySoundNunber 2

I nMenmor ySoundNunber 3) ;

/1l Network All ocations

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (22 of 77) [1/22/2002 12:26:51 PM]

SynthScript
Event Net Sel ect AWavet abl e2Qut ();
Event Net convert Event TypeNFQut ();
Event Net i ndexNFQut ();
Event Net nerger NFQut ();
Event Net slider NFQut ();
Audi oNet readonceUGQut ();
/1l This is the stream ng read once. Notice
/1 that it is initially assigned to one of the
/1 RonmUGs, but RonlUGs can be passed to
/1 it in an event paraneter.
readonceUG St r eantr omvenory
(out =r eadonceUGCut ,
contr ol =nmer ger NFQut ,
[wavet abl e=I nMenor ySoundNunber 1: waveTabl el ndex]) ;
out 2sunlJG Speaker
(i n=readonceUGQut ,
[beari ng=0.0, scale=1.0]);
/1l This is used to index the list of RomJGs.
i ndexNF | ndexASoundFr onLi st
(out =i ndexNFQut ,
i n=sl i der NFQut ,
[i ndex=0,
i ndexPar =waveTabl el ndex,
out Par =waveTabl el ndex,
I i st=SoundFi | eLi st ,
trigger Mode="i ndex"]);
/1 Notice that the nane of the slider is
/] actually a string. This allows the U
/1 to display this string as the name of the
/'l controller.
EXPORTED nunber Var NF " Sel ect a wavet abl e 0-2"
(out =sl i der NFQut ,
[par =waveTabl el ndex,
initialize=1,

max=2. 0,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (23 of 77) [1/22/2002 12:26:51 PM]

SynthScript
m n=0. 0,
i nt Val ue=0]);
EXPORTED nunberVarNF "Click on this to trigger the sound!"
(out =Sel ect AWavet abl e2CQut ,
[par =keyNum
initialize=1,
max=65. 0,
m n=55. 0,
i nt Val ue=60]);
convert Event TypeNF Convert ToEvent On
(out =convert Event TypeNFQut ,
i n=Sel ect AWavet abl e2Cut ,
[toType="noteOn", fronType="noteUpdate"]);
ner ger NF Mer ge
(out =mer ger NFCut ,
i n1=convert Event TypeNFCut ,
i n2=i ndexNFQut ,
[i nput Count =2]);
} // End
3.3 What happensto data, in SynthCore?

Datais stored in the template, and all instances of an algorithm reference the data. For example, if atemplate for an
algorithm contained 4 meg of wavetable data (RomUG), it would be unreasonable for each instance of the algorithm to
have a copy of the wavetable data. Thus each running instance of the algorithm references this data, rather than having
copies of the data.

A question comes up about how different hierarchical parts of an algorithm can reference data that is defined in another
level of the hierarchy of an algorithm. There are 2 mechanisms that are used to resolve symbolic references to data:

« Datacan bereferred to symbolicaly by its fully qualified hierarchical name.

« If asymbol for adataitem is not found in the current level of hierarchy, it isresolved by searching for the symbol
up through the hierarchy of the patch. Thisisreally just another way of saying that symbolic references are
resolved using the same scope rules that C uses for automatic variablesin blocks.

For instance if an algorithm consists of the following instance/class hierarchy, and data definitions:
Thefirst thing to note is that the fully qualified hierarchical names for each of the pieces of data are:
Thi sLi stlslnTheTopLevel
Thi sl sALi st
Osc_1/ Thi sLi stlslnTheGsc
Osc_1/ Thi sl sALi st
Osc_2/ Thi sLi stlslnTheGsc

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (24 of 77) [1/22/2002 12:26:51 PM]

SynthScript
Osc_2/ Thi sl sALi st

Osc_3/ Thi sLi stlslnTheGsc
Osc_3/ Thi sl sALi st

Any StateProc at any level of the hierarchy could be assigned to a the fully qualified hierarchical name. Thus
UnitGenerators instanced in the mixer SubAlgorithm can access data that is defined in an instance of the osc using the
fully qualified name.

The second thing to note, isthat thereisalist called "ThislSAList" in the instances of the osc, aswell asin the top level
patch. If a StateProc in an instance of the osc is assigned to "ThisIsAList", then it is assigned to the locally scoped data.
If a StateProc in the mixer SubAlgorithm is assigned to "ThisIsAList", alocally scoped data cannot be found. The
assignment to the data will be resolved by walking up the hierarchy until adata called "ThislsSAList" can be found. In
this case, it will be resolved to the data in the top level patch.

Chapter 4SynthScript Files, High level view

4.1 SynthScript Syntactic Hierar chy

The three previous examples have demonstrated that SynthScript is free format text, and that SynthScript can be used to represent a
hierarchical patch as a collection of patch and SubAlgorithm definitions, that contain instances of UnitGenerators, EventFilters and data.
Event that SynthScript can be contained in afile, or streamed interactively to SynthCore.

« SynthScript files can actually contain a bit more than a single patch, and its associated SubAlgorithms.

« Multiple patches can be defined in a SynthScript file or streaming session.

« An alternate form of a patch called a Preset can be defined.

« Different patches can share SubAlgorithms, such as a processing unit (reverb, harmonizer)

« Collections of patches that share acommon MIDI program space can be collected into a Palette, and multiple pal ettes can be defined.

o Commands are provided to alocate algorithms
« Update commands are provided to interact with the internals of an algorithm as a part of the voicing process.

The following describes the hierarchy of SynthScript

SynthScript(File or Interactive Streaming)
Palette
o Algorithm
o SubAlgorithm
0 Preset
o Data(Notin1.1)
Algorithm (in the default palette)
SubAlgorithm (in the default pal ette)
Preset (in the default palette)
Data (Notin 1.1)
Command
Update
4.2 SynthScript Parsing

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (25 of 77) [1/22/2002 12:26:51 PM]

SynthScript

The parser for SynthScript was implemented with Lex/Y acc. The full grammar is formally defined in Chapter 9. The
goal of the parser isto read and validate SynthScript for correct syntax and semantic formation and install parsed data
into template tables. Thus the parser would reject partially formed SynthScript instance statements or other types of
syntactic errors. An example of a semantic error would be if a non-existent UnitGenerator is instanced.

Aswas noted with the first example, when SynthScript is read into SynthCore it is validated with the SynthScript Parser.
If errors are detected they are indicated with error messages such asthis:

(0000028) o0scgUG MyGscillator (0000029) (out=o0scgUlut, ; control =sliderNFQut, *
parse error at |line [0000029] between <,>, and <;>.

(0000030) [anmp=0.5, (0000031) freqg=440.0: Cscill atorFrequency, (0000032) phase=0.0,
(0000033) trace=0](0000034));

Synt hCore: The SynthScript patch Hell oWwrld was read,

0 warnings, 1 errors.
The parser consists of 3 functional sections, Input, Lexical Analysis and Parsing.

The SynthScript Project isreally organized into 3 functional modules, parser, template management, and allocated
algorithm management (DLA manager)

The processing goes something like this. The parser reads SynthScript, and creates template tables. Allocation
commands use the template tables to create running alocated instances of algorithms. The runtime support will be
described in greater detail in the next chapter.

4.3 Includefiles

A simplelexical level include file mechanism is provided in SynthScript. Here is an example of how include files work.
First thereisafile caled osg.dla. Here is the SynthScript that is defined in osg.dla:

/1 include the definition of the speaker SubAl gorithm
#i ncl ude "speaker.dl a"
Al gorithm osg(

[BankVBB=55,
BankLSB=55,

Pr ogr an=56,

Sanpl i ngRat e=44100])

{

Audi oNet oscgUGQut () ;
oscgUG oscgUG

(out =oscgucCut ,

[anp=0. 5,

freq=440]);

speaker speaker (1 N=oscgUGQut) ;

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (26 of 77) [1/22/2002 12:26:51 PM]

SynthScript

}

Hereis asecond file that is found in the same directory as osg.dla, called speaker.dla:
SubAl gorit hm speaker (Audi oNet IN) {
out 2sunlJG out 2sunJG (i n=I N, [bearing=0, scale=1.0, trace=0]);
} /* speaker */

Event that the include file is found relative to the location of the parent .dlafile. This presents a problem for streaming
SynthScript, because its not really coming from afile. Streaming SynthScript can use fully qualified hierarchical file
names. An example would be:

#include "c:\tenmp\bla.notelist"

Event that thisis system dependent. Currently the only system that we support is winX. However its possible in the
future that we just do the right thing and consider all the major file ref mechanisms (winX, Mac, Unix, URL) to be
interchangeable.

Event that file paths relative to the parent .dlafile are supported as well.

#include "..\..\bla.notelist"
Event that unlike C, #include may appear anywherein aline, and can even appear multiple times.
4.4 Encryption

A simple XOR based encryption mechanism is provided. Encryption/Decryption is handled at the input level of the
lexical analyzer. This meansthat by the time that characters have been read into the lexical analyzer, they have already
been decrypted. The goal of encryption in R1.1 was prevent the casual user from viewing DLA files. The goal was NOT
to proved a bullet proof method of keeping hard core hackers from viewing SynthScript files.

SynthBuilder supports exporting SynthScript files in encrypted format. Also a command line program called xorencrypt
is provided to encrypt/decrypt a.dlafile. This command line program may be invoked with the following:

xorencrypt password < filel > file2

Event that encryption is a commuting operation. Thusif afileis encrypted once with the password "Foo" it will bein
encrypted format. If its encrypted a second time with the password "Foo", it will bein clear text.

4.5 Pretty Printing

A simple pretty printing program is provided to pretty print SynthScript files. This program can be found in
...\srctreg\tool s\win32dlapp. . This command line program may be invoked with the following:

dl app password < filel > file2

Chapter 5SynthScript Runtime Support

As has been mentioned in the three tutorial examples, when an algorithm is read into SynthCore its not actually
computing. The process of reading an algorithm into SynthCore only creates a template assigned to aMIDI program
location that can be used to allocate multiple copies of the algorithm. The following diagram shows schematically the
architecture of the SynthScript runtime system.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (27 of 77) [1/22/2002 12:26:51 PM]

SynthScript

Chapter 6 SynthScript Constant Data Types

This chapter will cover details about the SynthScript constant data types. A formal grammar for these datatypesis
presented in Chapter 9. Note that SynthScript islargely a set of constant data declarations. Because SynthScript is parsed
into template tables, and is not fully resolved until an agorithm is allocated, there are no define before use restrictions.
However for clarity its always a good thing to define something before its used.

6.1 ControlPar

A ControlPar is used to carry values within events. For instance an event might be passed from a MidilnNF EventFilter
that contains the Control Par keyNum, which is used to pass keyNum to a UnitGenerator. keyNum is an example of a
system defined Control Par.

Users may also create a new Control Par as needed. For instance an event might be passed to an offsetNF EventFilter.
This EventFilter could insert a new ControlPar called "NewKeyNum" with avalue of keyNum+7. The Control Par
NewKeyNum needs to be defined in SynthScript so that it can be used by UnitGenerators and EventFilters.

A ControlPar(s) can be defined anywhere in the body of a patch or SubAlgorithm with statements like this:
Control Par waveTabl el ndex, aSel ecti on;

Cont r ol Par anot her Cont r ol Par ;

Event that each SubAlgorithm may want to define the ControlPar(s) that it uses, rather than depending on the
ControlPar(s) being defined in the top level patch. Its ok to have duplicate ControlPar(s) in a patch, or in the hierarchy of
apatch. Thusthe following is ok:

SubAl gorit hm speaker (Audi oNet | N)
{
Control Par volune; // volume is defined in both the
/1 SubAl gorithmand the top | evel patch
out 2sumJG out 2sunmJG (i n=I N, [scal e=1.0:volune]);
} /'* speaker */
Al gorithm osg([BankMSB=55, BankLSB=55, Progran=56,
Sanpl i ngRat e=44100])
{
Control Par volune; // volume is defined in both the
/1 SubAl gorithmand the top | evel patch
Audi oNet oscgUGQut () ;
oscgUG oscgUG (out =oscgUCut, [anp=0.5: vol une, freq=440]);
speaker speaker (| N=oscgUGQut);
} /* osg */
6.2 Int

Int isafundamental datatype. In SynthScript Ints are 32 bit longs. Ints may be defined either explicitly (symbolicaly),
implicitly or passed as avaue in a Control Par.

The following snippet of SynthScript demonstrates all three of these.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (28 of 77) [1/22/2002 12:26:51 PM]

SynthScript
Control Par Lengt hControl Par;

Int Length = 128;

ranJG r1 ([size=2048, constant=0.0]);
/1 The StateProc del ayLength
/] is initially assigned to
/1 a synbolic val ue
/1 "Length" that is

I/ defined el se where.

del ayUG del ayUG ([del ayMenory=r1,

del ayLengt h= Lengt h: Lengt hControl Par]);

6.3 Real

Real isafundamenta datatype. In SynthScript Reals are 64 bit doubles. Reals may be defined either explicitly
(symbolically), implicitly or passed as avalue in a Control Par.

The following snippet of SynthScript demonstrates all three of these.

Control Par freqControl Par;

Real anplitudeValue = 0.5;

/1 The StateProc anp
/[l is initially assigned to
/1 a synbolic val ue
/] "anplitudeVal ue" that is
/] defined el se where.

oscgUG oscgUG (out =oscgUCut, [anp= anplitudeVal ue,

/!l The StateProc "freq" is

/] assigned to the inplicit

/'l Real value 440.0. Notice

/] that its actually set to an

/1 1nt value, but the DLAmanger

/1 will do the type conversion

/[l Also "freq" is bound to a
/! Control Par "freqControl par"
[/l The stateProc "freq" wll
/1 respond to Events contai ning
/] this Control Par

freq=440:freqControl Par]);

6.4 Object

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (29 of 77) [1/22/2002 12:26:51 PM]

SynthScript

SynthScript supports a number of objects to be described below. Objects may be assigned to StateProcs as Symbolic
references. Event that an instance of a UnitGenerator or a EventFilter is an object as well.

6.4.1 IntArray

IntArray isan object that represents an array of Ints. IntArrays may be defined either explicitly (symbolically), implicitly
or passed as avaue in a Control Par. None of the current unitGenerators has an IntArray StateProc. Normally IntArrays
appear implicitly as a part of alist. Event that the first element of an implicit array, either IntArray or RealArray, isused
to disambiguate its type.

The following exampleisfor a contrived UnitGenerator. However it illustrates how an IntArray can be assigned to a
StateProc.

Control Par aControl Par;

IntArray Arr = {1, 2, 3,4, 5, 6};

aContri vedUG MYUG ([St at eProcl1={1, 2, 3, 4},
StateProc2= Arr: aControl Par]);

The elements of an IntArray can be either integers, reals (reals will be cast to int), or afile reference. Thus the following
iIspossible.

IntArray Arr = {1, 2, 3.0,
"c:\aSoundFi | e. wav", 4, 5,

"c:\anot her SoundFi | e. wav", 6. 0};

Also because the include mechanism can be used anywhere, its also possible to populate an IntArray from an externa
datafile.

IntArray Arr = {1, 2, 3.0,
"c:\aSoundFi | e. wav", 4, 5,
#i ncl ude "myDat aFi |l el", 6.0,
#i ncl ude "nyDat aFi | e2", #include "nyDat aFil e2"
1
6.4.2 RealArray

Rea Array is an object that represents an array of Reals, (double). Real Arrays may be defined either explicitly
(symbolically), implicitly or passed as avalue in a Control Par. Event that the first element of an implicit array, either
IntArray or RealArray, is used to disambiguate its type.

The following exampleiillustrates how an Real Array can be assigned to a StateProc. This twopole filter supports using a
RealArray to set its coefficents.

Contr ol Par Coeff Par;

Real Array CoeffArray = {0.1, 0.2, 0.3};

twopol eUG nyFilterl ([rectCoeffs = { 0.9, 0.3, 0.4}:CoeffPar]);
t wopol eUG nyFilter2 ([rectCoeffs = CoeffArray: CoeffPar]);

The elements of an RealArray can be either integers(Ints will be cast to real, reals or afile reference. Thus the following
ispossible.

Real Array Arr = {1.0, 2, 3.0,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (30 of 77) [1/22/2002 12:26:51 PM]

SynthScript
"c:\aSoundFil e. wav", 4, 5,

"c:\anot her SoundFi | e. wav", 6. 0};

Also because the include mechanism can be used anywhere, its also possible to populate an IntArray from an externa
datafile.

Real Array Arr = {1.0, 2, 3.0,
"c:\aSoundFi |l e. wav", 4, 5,
#i ncl ude "nyDat aFil el", 6.0,
#i ncl ude "nyDat aFi | e2", #include "myDat aFi | e2"
1
6.4.3 RomUG (memory Streaming)

RomUG is an object that represents an array of DSPReals, (float). RomUG may be defined either explicitly
(symbolically), or passed as a value in a ControlPar. RomUG cannot be defined implicitly, because it cannot be
disambiguated from RealArray. A common use for RomUG, isto use it to store sound data that will be streamed from
Memory.

The following exampleiillustrates how an Real Array can be assigned to a StateProc.
Cont r ol Par RonPar
RonUG ronml = {0.0, 0.0};
RonJUG ron2 = {0.0, "c:\awaveFile.wav", 0.0};

readonceUG readonceUG ([wavet abl e=r oml: RonPar]) ;

The elements of an RomUG can be either integers(Ints will be cast to real, reals or afile reference. Thusthe following is
possible.

RomJG Data = {1.0, 2, 3.0,
"c:\aSoundFi |l e. wav", 4, 5,

"c:\anot her SoundFi | e. wav", 6. 0};

Also because the include mechanism can be used anywhere, its also possible to populate an IntArray from an external
datafile.

RomUG Data = {1.0, 2, 3.0,
"c:\aSoundFi |l e. wav", 4, 5,
#i ncl ude "nyDataFilel", 6.0,
#i ncl ude "nyDat aFi |l e2", #include "myDat aFil e2"

b

6.4.4 Event

Event is an object that includes a type and an unordered collection of ControlPars and their values. The notation is
similar to that of arrays. Thefirst element is an event type. All successive elements are Control Pars assigned to values,
and the order isirrelevent.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (31 of 77) [1/22/2002 12:26:51 PM]

SynthScript

Events may be stored in Lists, passed to UG or NF state procs, etc. In fact, SynthScript cares nothing about the contents
of an event. It isup to the UG or NF that processes the event to interpret the control Pars contained therein.

One of the main consumers of eventsis the eventlistPlayerNF. This EventFilter takes alist of events and sends them to
Its output at atime gleaned from the beat controlPar in each event. Beat is a 0-based time, which is so-named because it
is modified by the eventlistPlayerNF s tempo. The times are relative to when the notelistPlayerNF is activated. For
example, the same event list could be played by two eventlistPlayerNFs, each activated at a different time. This would
produce amusical canon or "round”.

Events may be defined either explicitly (symbolically), implicitly or passed as a value in a Control Par.

The following are examples of Events.

Event N1 = {NoteOff, beat=0.4, freq=440.0}; // Event with real Control Par
Event N2 = {NoteOn, beat =0.4, keyNunx60}; // Event with integer Control Par
Event N3 = {NoteDur, beat =0.4, dur=2.1,

somel nt Array={100, 200, 300}}; // Event with inplicit IntArray

/1 Control Par

Event N4 = {Not eUpdate, beat =0.4,

soneReal Array={100.0, 200.0, 300.0}}; // Event with inmplicit

/'l Real Array Control Par

Note that the first element of this array type, is an EventType and , is used to disambiguate it from similar-looking array
types. The following are valid EventTypes:

« NoteOn - Thisisan event that signals the start of amusical note.
Generated by SynthCore in response to incoming MIDI

NoteOn messages.
« NoteOff - Thisisan event that signals the beginning of the release portion

of amusical note. Generated by SynthCore in response to

incoming MIDI NoteOff messages.
« NoteDur -Thisis an event that represents a combined NoteOn/NoteOff pair.

The time from the NoteOn to the NoteOff isindicated by the dur
controlPar (which isin seconds, not beats.) Event lists generated
from incoming MIDI or from Standard MIDI files do not have

NoteDurs.
« NoteUpdate - Thisis an update to a sounding musical note. Frequently thisisa

MIDI controller event.
« Mute- Thisisageneral purpose Event event not specifically associated

with a sounding musical note. It is used to represent things like
SysEx, or Copyright.

Hereisatypical event list that might come from recording incoming MIDI:
List el = ({NoteOn, beat=0.4, keyNum=60, normnali zedVel ocity=0.7},

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (32 of 77) [1/22/2002 12:26:51 PM]

SynthScript
{ Not eUpdat e, beat =0.b5, plItchBend=/123},

{NoteOrf, beat =0.8, keyNunr60})

Each of the successive elementsin the Event, are ControlPars, and they are assigned to a value that can be any valid
SynthScript constant datatype. All of the ControlPars that are predefined are listed in sections 9.3 and 9.4.

6.45List

List isapowerful datatype in SynthScript. We borrow the Lisp notation for list. In SynthScript, lists can contain any
object, or asymbolic referance to an object. List is used to collect together the basic data types into something that can
passed around as a single object.

Hereisasimple example of alist:
IntArray A ={1,2,3,4,5};
IntArray B = {4,5,6,7, 8};
List Z = (A B);

The following shows some more complex examples. Note that its possible to create implicit and explict objects directly
in the body of thelist. Also theidentifiersin alist are not scoped by the depth in the list. Thusin the case below,
IntArray F can be referenced by anything in the patch or SubAlgorithm that itisin.

IntArray A = {1, 2,3,4,5};

IntArray B = {4,5,6,7, 8};

Real Array C = {1.0, 2.0, 3.0, 4.0};
Real Array D = {5.0, 6.0, 7.0, 8.0};
List Z=(AB(CD A);

List E=(AB(CD D(ABGO
CAZ

{1.0, 2.0, 3.0}

{1, 2, 3,4,5}

{IntArray F = {1, 2,3,4,5}}

{Real Array G = {1.0,2.0,3.0,4.0,5.0}}
F G

{RomUG H = {1.0, 2.0, 3.0}}

HH

)

An important point about lists, isthat they are fully hierarchical, and the special EventFilter indexNF can be used to
index into alist. The indexNF can also be cascaded to index deeply into hierarchical lists. Possiblities are lists of
wavetables that can be selected, lists of lists of notes (lists of scores), that can be selected.

There are anumber of special cases of List, that specific StateProcs respond to. They are defined by convention. These
specific lists are:

o Event List - ascore of events.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (33 of 77) [1/22/2002 12:26:51 PM]

SynthScript
« Lookup Table - asingle argument lookup
« Envelope - an Envelope for an Envelope handler
o Partids- aList of partials for partial based synthesis.

There will probably be more conventionsin the future.
6.4.5.1 EventList
Event list is a used to collect together note eventsinto alist that can be scheduled for execution.

The special EventFilter notelistPlayerNF, is used to schedule these events. The special EventFilter notelistRecorderNF,
is used to record these events. The following is an example of this of two noteLists that are collected into another list, a
list of Scores. The Index EventFilter can be used to select these scores for performance.

Control Par EventList, Scorelist;
List Mni Scorel = ({EventOn, beat=0.4, freq=440.0}
{Event On, beat=0.5, freq=441.0}
{Event On, beat=0.6, freq=442.0}
{Event On, beat=0.7, freq=443.0}
{Event On, beat=0.8, freq=444.0}
{Event On, beat=0.9, freq=445.0}
)
List Mni Score2 = ({EventOn, beat=0.4, freq=220.0}
{Event On, beat=0.5, freq=221.0}
{Event On, beat=0.6, freq=222.0}
{Event On, beat=0.7, freq=223.0}
{Event On, beat=0.8, freq=224.0}
{Event On, beat=0.9, freq=225.0}
)
/1 Use Index EventFilter to select between these
/1 2 mni-scores
Li st TwoScores = (M ni Scorel M ni Score2);
Event Net i ndexNFQut ();
Event Net slider NFQut ();
EXPORTED nunber Var NF sl i der NF
(out =sl i der NFQut ,
[par=EventList,initialize=1, max=1.0, m n=0.0,
i nt Val ue=0]);
i ndexNF i ndexNF
(out =i ndexNFQut, in=sliderNFQut,

[i ndex=0, i ndexPar=ScorelLi st,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (34 of 77) [1/22/2002 12:26:51 PM]

SynthScript

out Par =Event Li st, |ist= TwoScor es,
trigger Mbde="i ndex"]);

not el i st Pl ayer NF notel i stPlayer NF

(1 n=i ndexNFQut ,
[notelist=Mni Scorel,
par Event | i st =Event Li st, tenpo=60.0]);
6.4.5.2 LookupTable

L ookup Tables are useful for precal culating lookups so that they don’t have to be calculated on the fly. The
lookupParamNF uses lookup tables which are represented as a list of two Real Arrays. Here is an example of alookup
table.

[R

I 1.10000C

lookupFParamMNF - envelope
¥ Imir:

) T
X

% min: | -0.1 # (02413420 ¥i[0EE119 xmax:|1.1nnnnm
|4 fFeset | output: ®y .. 3 Size To Fit | Help I

Here is how this lookupParamNF isinstanced using an implict list of two Real Arrays.
| ookupPar anNF | ookupParaniNF ([| ookup=

(// List of 2 Real Arrays

/1 X coordi nates

{0.0,0.15441, 0. 222261, 0. 3558304, 0. 3600,

0. 44063, 0. 51272, 0. 673851, 0. 69293284, 0. 7904593,

0. 90494, 0. 9240282, 1. 0}

/1 Y coordinates
{0.0,0.64776, 0. 383582, 0. 5716418, 0. 1149253, 0. 52238,
0. 334328, 0. 688059, 0. 46417, 0. 8985,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (35 of 77) [1/22/2002 12:26:51 PM]

SynthScript

0.3074626, 0. 670149, 1. 0}

1);
Thelist could have aso been declared explicitly and either assigned or passed in a Control Par.
6.4.5.3 Envelope

Envelopes are useful for controlling UnitGenerators. They can be used to control things such as frequency or amplitie
The asympUG uses |ookup tables which are represented as alist of 4 RealArrays. Here is an example of alookup table.

asympllG - envelope

[N

I 1.10000C L

¥ min: ¥

I-I:I.1
:x;min:l-l:u x:lD.S target_l.-':|1 actua]y:ID.ElElEl?m 3m|:u:|thin|:_1:|1 xma:x;:|1.1|:u:u:u:u:lt

IE stick point [v Reset output: Musickit e Size To Fit Hel
- P | | P I

asympUG asynmpUG
([yScal e=1.0, yOfset=0.0, tinmeScal e=1.0,
rel easeTi neScal e=1. 0, articul ati onMbde=1,
envel ope=(
/'l X Coords
{0.0,0.30070, 0.5, 0. 5614, 0. 6929, 1. 0}

I/ X Coords
{0.0,0.9388, 1.0, 0.42388, 0. 146268, 0. 0}
/1 Snooting factor
{1.0,1.0,1.0,1.0,1.0,1.0}

/1 Which point is the stick point.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (36 of 77) [1/22/2002 12:26:51 PM]

SynthScript
12),
st opVoi ceAt EndCf Envel ope=0, trace=0]);

Thelist could have aso been declared explicitly and either assigned or passed in a Control Par.
6.4.5.4 Partials

Partials useful for describing waveform shapes The ranmUG (memory) can be populated from a partialslist. Thislistis
represented as alist of 3 RealArrays. Here is an example of aramUG populated from a partials list.

raml1 [type: Ham¥Yar patch: UNTITLED3] X

Mame: |rarn1

Partial Amplitude = I Table Size: |25s Mumber of Partials: I?
| | |
T - TI e 'I'I

[os1z fo fos Jo Joz4r o [oozac

KN ENN EXS CO R GRS

ranmG ranml ([size=256, fronPartial s=(
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}
{0.91269, 0.0, 0.5, 0.0, 0.341269, 0.0, 0.246031}
{0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0})
1);
oscgafi UG oscgafi UG ([incScal er=1.0, wavetabl e=raml]);
Thelist could have aso been declared explicitly and either assigned or passed to the ramUG in a Control Par.

6.5 I nstance

As has been illustrated in the examples so far, instance is the data type that is used to create instances of objects running
in SynthCore. In its simplest form, instance consists of something like this:

I/ C assNane | nstanceNane

oscgUG MyGsci | | at or

/1 Connectivity

(out = oscAudi oQut, control = m di MergerQut,
/] State values and control Par bi ndi ngs.

[anmp=0. 5,

freq=440. 0: Gsci | | at or Fr equency]

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (37 of 77) [1/22/2002 12:26:51 PM]

SynthScript
)

There are some special cases that need to be considered.

6.5.1 InstanceNames

In general instanceNames are just simple identifiers. However, its aso possible for an instance name to be a String. This
allows for descriptive names for controllers to be exported to the public API. For instance an exported slider might |ook
like this:

EXPORTED nunberVarNF "This slider is named with
a sentence with new ines"
(out =slider NFQut, [par=foo,
initialize=1,
max=1. 0,
m n=-1.0,
real Val ue=0. 282051,
trace=0]
)i
The public API returns the name of the slider as a string with anewline. It can be displayed like this:

StreamingBeadlnce

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (38 of 77) [1/22/2002 12:26:51 PM]

SynthScript
6.5.2 Connectivity

Connectivity is specified by assignment of a pin to a network. An example would be:

(

pi n1 = networ kNare,
pi n2 = anot her Net wor kNane,
)i

6.5.3 StateProcs

StateProcs are initally assigned to a SynthScript constant data type, and can be bound to a ControlPar. When ever an
event is passed to the particular UnitGenerator, if it contains that EventPar, then the stateProc that is bound to it will be
called. An example of a StateProc assignment, and binding would be:

[procl= 1.0:aControl Parl,

proc2 = aSynbol i cRef ernce: aControl Par2 ...
]

6.5.3.1 Enable

Enableis a StateProc that is owned by all instances of SubAlgorithms. This StateProc can be used to enable and disable
compuation of the SubAlgorithm.

6.5.3.2 Trace

Traceis a StateProc that is owned by al instances. This StateProc can be used to enable and disable verbosity levelsfor
tracing. It has bit fields, to enable different types of tracing. Common values are 0, no Tracing, 63 verbose tracing.

6.5.3.3 Monitor

Monitor is a StateProc that is owned by all instances. This StateProc can be used to enable and disable monitoring of
computation for that UG. Monitoring is currently written to the log file.

6.5.3.4 Clear Outputs

ClearOutputsis a StateProc that is owned by all instances. This StateProc can be used to clear all of the output
patchpoints (audioNets) of the UG.

6.5.4 Tags - representing extended data

Tags are similar to state. They are bracketed by ‘<’ ‘>’ and contain symbolic names assigned to SynthScript constant
datatypes. They are not used for Synthesis, they are user defined data that can be queried from the public API, and can
be used to represent things like graphical coordinates, or other user defined data.

Hereis an example:

Al gorithm exanmpl e ([BankMsB=55,
BankLSB=55,
Pr ogr anr56,

Sanpl i ngRat e=44100]

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (39 of 77) [1/22/2002 12:26:51 PM]

SynthScript

/1 here are sonme tags
<xbounds = 100. 00,
ybounds = 100. 00,
color = "Red">)

{ /'l begin exanple

I/ . . . other stuff

oscgUG MyGsci |l I at or

(out = oscAudi oQut <pi nSequence = 1>, // Note the pin tag

control = m di MergerQut <pi nSequence = 2>,

/] State values and control Par bi ndi ngs.

[anp=0. 5,

freq=440. 0: Gsci | | at or Frequency],

/1l This is a "vector" of instance tags.

<xcoord = 100.0,

ycoord = 100. 0,

i con="aFi | eRef erence" >

)

//. . . other stuff

} /1 end of exanple

Tags can appear in 3 possible contexts.
« Inthedefinition of Algorithm, SubAlgorithm, or Preset.

« Inthebody of aninstance
« Associated with aPin.

Tags are provided so that extra data can be represented that does not apply to synthesis. A possible application for tags
areto read SynthScript back into SynthBuilder. The tags can be used to store the coordinates, sizes, etc of all of the
objects needed to create a SynthBuilder document from the SynthScript. Another possible application for tags would be
to use SynthBuilder to define the GUI for a patch, and pass to a GUI application in the SynthScript.

6.5.5 SampleRates

Each instance of a UnitGenerator can have its own SamplingRate. Sampling Rate is an optional real number that cann
appear after the instanceName. Here is an example:

0oscgUG oscgUG 44100.0 ([anp=0.5, freq=440.0]);

Valid values are 88200.0, 44100.0, 22050.0 11025.0, 5512.5, 2756.25, 1378.125,
689. 0625

6.6 Symbolic Reference

StateProcs can be assigned to symbolic references. These will be resolved the the algorithm is allocated. They may be
hierarchical references.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (40 of 77) [1/22/2002 12:26:51 PM]

SynthScript
6.6.1 Hierarchical references

Names by be hierarchical references. Thisis described with an examplein Section 3.3

Any StateProc at any level of the hierarchy could be assigned to athe fully qualified hierarchical name. Thus
UnitGenerators instanced in the mixer SubAlgorithm can access data that is defined in an instance of the osc using the
fully qualified name.

If asymboic referenceis not fully qualified then the symbolic reference will be resolved by walking up the hierarchy
until areference can be found.

6.7 Algorithm & SubAlgorithm

Algorithm isthe root of an algorithm. Algorithm can have a number of parameters that describe it, program location, SamplingRate,
TickSize, Version Number. An Algorithm declaration looks something like this:

Al gorithm osg(
[Bank MSB=55,
BankLSB=55,
Pr ogr anr56,
Sanpl i ngRat e=44100])
{
/1 body of the algorithm

}

Possible parameters that can appear here are:

o BankMSB — An Integer (assumed to be O if omitted)

« BankLSB — An Integer (assumed to be O if omitted)

o Program — An Integer

« SamplingRate — A valid SamplingRate

o TickSize- A valid TickSize

« Version - SynthScript Version. Currently only the integer 1 is supported.
The only required parameter is Program.

SubAlgorithm isa hierarchical element. SubAlgorithm can have a number of parameters associated with it. In particular, its connectivity
interface must be defined.

SubAl gorithm Gsci | | at or SubAl gorithm (Audi oNet oscAudi oQut,
Control Pi n SubAl gorithmControl,

[Sanpl i ngRat e=22050,

Ti ckSi ze=32])

{

/'] body of the sub patch

}

The connectivity interface is defined as pins. Event that one of the MidiPins can be designated as the ControlPin. This
pin will be the pin that can respond to phrase status messages that can enable and disable the patch. An imporant point to
note, is that networks are not declared for pins. Bank and program locations are not valid for SubAlgorithms. However
SubAlgorithms can have SamplingRates and TickSizes and Versions.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (41 of 77) [1/22/2002 12:26:51 PM]

SynthScript

6.8 Preset

Slider control objects (numVarNF), can be tagged with the keyword directive "EXPORTED". All of the numVarNFs
that are tagged as EXPORTED can be introspected by SynthCore's public API. We refer to these EXPORTED
numVarNFs as the "Exported Control Surface" for the patch.

The following is a simple example that shows how this works in both SynthBuilder, and in SynthScript.
Al gorithm sinpl e([Versi on=1,

Sanpl i ngRat e=22050. 000000,

Ti ckSi ze=32,

Bank M5SB=0,

B = simple_sb {SR=22050 T5=32 MSB=0 LSB=50 PGH... [[=] E3

File Edit Format Tool: ‘Windows Sound DERMO Help

O A R (s) = (1)

|)
Simple Example
with EXPORTED slider

4] | b
|

BankLSB=50,

Progranel])

{

Control Par freq;

Event Net slider NFQut (
)

Audi oNet oscgUQQut (
)

out 2sunlJG out 2sunlJG (
i n=oscgUGQut ,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (42 of 77) [1/22/2002 12:26:51 PM]

SynthScript
| beari ng=0. 0,

scal e=1. 0,

t race=0]

)

0scgUG oscgUG (

out =oscgUut ,
control =sl i der NFQut ,
[anp=0. 5,
freq=440.0:freq,
phase=0. 0,

trace=0]

)

EXPORTED nunber Var NF FreqControl (
out =sl i der NFQut ,

[par=freq,
initialize=1
max=1000. 0,

m n=1. 0,

real Val ue=716. 333333333333,
trace=0]

)

} /* simple() */

Presets are supported with a variation on Algorithm(). "Preset()" is at the same level in the SynthScript grammar as
Algorithm() and SubAlgorithm().

o A Preset() references by name, the Algorithm() that it can be applied to.

o Presetslike Algorithms are located in MidiProgram space by a unigue ProgramNumber
(BankM SB/BankL SB/Program).

« A preset may be allocated by either the public API or by a MIDI program change in the same way that a
Algorithm can be allocated. If the Algorithm() that the preset appliesto is not yet allocated, it will be allocated.

« Thebody of preset will consists of alist of values that can be applied to the Exported Control Surface of the
referenced patch.

The following is an example of a Preset():
Preset sinpl ePreset1([Version=1
Al gorit hmeSi npl e,
BankM5B=0,
BankLSB=50,

Progran¥2])

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (43 of 77) [1/22/2002 12:26:51 PM]

SynthScript
{

/] This preset sets the real Val ue
/1 of nunWar instance FregqControl to 120.0
FregControl ([real Val ue=123.0]);

}

In order to support a differentiation between "Performance” controllers and "Tuning" controllers, atag can be added to
indicate if an exported controller isfor "Performance” or for "Tuning". The following is an example of each of these
types of

EXPORTED controllers.
EXPORTED nunber Var NF PanControl <ControllerType = "Performance"> (
out =sl i der NFCQut ,
[par =pan,
initialize=1,
max=45. 0,
m n=-45. 0,
real Val ue=0. 282051,

trace=0]

EXPORTED nunber Var NF PanControl <ControllerType = "Tuning"> (
out =sl i der NFCut ,

[par =pan,

initialize=1,

max=45. 0,

m n=-45. 0,

real Val ue=0. 282051,

t race=0]

The following example shows a hierarchical patch, and its presets.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (44 of 77) [1/22/2002 12:26:51 PM]

SynthScript

B * OutPutSubpatch sh{SR=22050 T5=32 M5B=0 L5 ..

Eile Edit Fommat Toolz ‘Windows Sound DEMO Help

O @] @)

This is the subpatch for
the output. It has an
EXPORTED Performance

controller for Pan.
B[4

o
Bl

1] | o

/1 SubAl gorithm out SubAl gorithm

SubAl gorit hm Qut SubAl gorithm (Audi oNet audi oPi n2
[Versi on=1,
Sanpl i ngRat e=22050. 000000,
Ti ckSi ze=32])
{
Cont rol Par pan;
Event Net slider NFQut (
)
out 2sunlJG anCQut put (
i n=audi oPi n2
cont r ol =sl i der NFQut ,
[beari ng=0. 0: pan,
scal e=1. 0,
trace=0]
)
/1 exported Performance controller
EXPORTED nunber Var NF PanCont r ol

<Control |l erType = "Perfornmance">

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (45 of 77) [1/22/2002 12:26:51 PM]

SynthScript
(out=sl1der N-Qut,

[par =pan,

initialize=1,

max=45. 0,

m n=-45. 0,

r eal Val ue=0. 282051,
trace=0]

)

} /* Qut SubAl gorithm() */

= - bla.sb {SR=22050 T5=32 M5B=0 L5B=50 PGM=1} C:\Backups\bla.sbh

File Edit Fomat Tool: ‘Windows Sound DEMO Help

y O] @)

s
"x_-J

Freq (Performance)

> 3

EAmp ('I:uning)E

Il —r
I A T T O o I |

-

y I

Here is the top level patch
with its Performance and
Tuning Controllers

Kl I

Subpatch Output

o

/'l Top Level Algorithm

Al gorithm Si npl eGsc([Versi on=1
Sanpl i ngRat e=22050. 000000,

Ti ckSi ze=32

Bank M5SB=0,

BankLSB=50,

Progranel])

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (46 of 77) [1/22/2002 12:26:51 PM]

SynthScript
i
Control Par freq;

Event Net slider NFQut (

)

Event Net slider NFOut1 (
)

Audi oNet oscgUCQut (

)

oscgUG anGsc (out =oscgUGCut ,

control =sl i der NFQut ,

[anp=0. 5,

freq=440.0:freq,

phase=0. 0,

t race=0]

)

/1 This is the instance of the hierarchical SubAl gorithm
Qut SubAl gori t hm Qut SubAl gorithml (

audi oPi n2=0scgUGQut ,

[enabl ed=1,

t race=0]

)

EXPORTED nunber Var NF FreqControl <Control |l er Type = "Perfornmance"> (
out =sl i der NFQut ,

[par=freq,

initialize=1

max=1000. 0,

m n=1. 0,

real Val ue=691. 666666666667,

t race=0]

)

EXPORTED nunber Var NF AmpControl <Controll er Type = "Tuning"> (
out =sl i der NFQut 1,

[par =anp,

initialize=1

max=1. 0,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (47 of 77) [1/22/2002 12:26:51 PM]

SynthScript
m n=0. 0,

r eal Val ue=1. 0,

t race=0]

)

} /1 SinpleGsc()

/1 Preset 1

Preset Sinpl eGscPreset1([Version=1
Al gorithmeSi npl eCsc,

Bank MsSB=0,

BankLSB=50,

Progran¥2])

{

FreqControl ([real Val ue=123.0]);
AmpControl ([real Val ue=0.9]);

/1 Event the hierarchical notation.

Qut SubAl gorithml/ PanControl ([real Val ue=-37.9.0]);
}

/1 Preset 2

Preset Sinpl eCscPreset 1([Versi on=1
Al gorit hmeSi npl eCsc,

BankMSB=0,

BankLSB=50,

Progranr3])

{

FreqControl ([real Val ue=456.0]) ;
AnpControl ([real Val ue=0.99]);

/1 BEvent the hierarchical notation.

Qut SubAl gorithml/ PanControl ([real Val ue=34.0]);
}

/1 Preset 3

Preset Sinpl eGscPreset1([Version=1
Al gorithmeSi npl eCsc,

Bank M5B=0,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (48 of 77) [1/22/2002 12:26:51 PM]

SynthScript
BankLSB=50,

Progran¥4])
{
FreqControl ([real Val ue=440.0]);
AmpCont rol ([real Val ue=0. 8]);
/'l Event the hierarchical notation.
Qut SubAl gori t hml/ PanControl ([real Val ue=-17.9.0]);
}
6.9 Palette

Paletteisalevel of hierarchy around a collection of patches and SubAlgorithms and presets. All patches and
SubAlgorithms and presets within a palette share the same MIDI program space. Also SubAlgorithms within a palette
can be shared by all the patches in the palette. Any patches SubAlgorithms and presets that are defined outside the scope
of apalette are entered into the default palette. The following example is a palette with patches on different program
locations and a shared SubAlgorithm.

Pal ett e ExanplePalette () {
/1 This is a shared SubAl gorithm
SubAl gorithm Gsci | | at or SubAl gorithm (Audi oNet oscAudi oQut,
Control Pi n SubAl gorithnmControl,
[Sampl i ngRat e=22050,
Ti ckSi ze=32])
{ /! begin GCscill atorSubAl gorithm
Control Par Gscill ator Frequency, Vol une;
Event Net MyFreqEvent SliderQut ();
Event Net mi di MergerQut ();
mer ger NF aMer ger (out= m di Merger Qut,
i n1=MyFr eqEvent Sl i der Qut,
i n2= SubAl gorit hnControl,
[i nput Count =2]) ;
EXPORTED nunber Var NF
MyVol uneSl i der (out =MyFregEvent Sl i der Qut,
[par =Vol une,
initialize=1,
max=1. 0,
m n=0. 0,
r eal Val ue=0. 5]);
oscgUG MyGsci |l | at or

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (49 of 77) [1/22/2002 12:26:51 PM]

SynthScript
(out= oscAudi out, control= m d MergerQut,

[anp=0. 5,
freq=440. 0: Gsci | | at or Fr equency]
)
} /1 end of GscillatorSubAl gorithm
/!l Here is the top | evel patch nunber 1
Al gorithm Hel | owbr| dHi er ar chyNunber 1([Ver si on=1,
Sanpl i ngRat e=22050,
Ti ckSi ze=32,
BankMsB=0,
BankLSB=50,
Progran¥l])
{
Control Par GOscill at or Frequency;
Event Net MyFreqEvent SliderQut2 ();
Event Net scal eParamNFQut 2 ();
Audi oNet add2UGQut ();
Audi oNet SubAl gori t hmAudi oPi n2 ();
Audi oNet SubAl gori t hmAudi oPi n3 ();
Gsci | | at or SubAl gorithm
Gscillator_1 (oscAudi oQut =SubAl gor it hmAudi oPi n2,
SubAl gori t hnCont r ol =scal ePar amNFCQut 2, [enabl ed=1]);
Gsci | | at or SubAl gorithm
Gscillator_2 (oscAudi oQut =SubAl gori t hmAudi oPi n3,
SubAl gori t hmCont r ol =MyFr eqEvent Sl i der Qut 2,
enabl ed=1]);
/1 This is the m xer
add2UG
add2UG (out =add2UCQut ,
i n1=SubAl gorit hmAudi oPi n3,
i n2=SubAl gori t hmAudi oPi n2) ;
out 2sunG
out 2sunJG (i n=add2UCCut ,
[scal e=1.0]);
EXPORTED number Var NF

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (50 of 77) [1/22/2002 12:26:51 PM]

SynthScript
My egevent Sl der (out =Mykr egevent Si i der Qut 2,

[par =Csci | | at or Fr equency,
initialize=1
max=500. 0,
m n=0. 0,
real Val ue=271. 60493]) ;
scal ePar amNF
scal ePar amNF (out =scal ePar anlNFQut 2,
i n=MyFr eqEvent Sl i der Qut 2,
[par I n=Csci | | at or Frequency,
par Cut =Csci | | at or Fr equency,
scal e=1. 5,
op="mul "]);
} // Hellowbrl dHi erarchyNunber 1
/1 Continued on the next page
Al gorithm Hel | owor | dHi er ar chyNunber 2([Ver si on=1
Sanpl i ngRat e=22050,
Ti ckSi ze=32
BankMsSB=0,
BankLSB=50,
Progranr2])
{
Control Par Gscil | at or Frequency;
Event Net MyFreqEvent SliderQut2 ();
Audi oNet SubAl gori t hmAudi oPi n2 ();
Gsci | | at or SUbAl gorithm
Gscillator_1 (oscAudi oQut =SubAl gorit hmAudi oPi n2,
SubAl gori t hnControl = MyFregEvent Sl i der Qut 2,
[enabl ed=1]);
out 2sunJG
out 2sunJG (i n= SubAl gori t hmAudi oPi n2,
[scal e=1.0]);
EXPORTED nunber Var NF
MyFreqEvent Sl i der (out =MyFreqEvent Sl i der Qut 2,

[par=Csci | | at or Fr equency,

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (51 of 77) [1/22/2002 12:26:51 PM]

SynthScript
Initralil ze=1,

max=500. 0,
m n=0. 0,
real Val ue=271. 60493]);
} /1 Hell owrl dHi erar chyNunber 1
} /* end of palette exanpl ePalette */
/'l Here is where the program assi gnments occur
Synt hst r eamAssi gnrent (Bank MSB=1,
BankLSB=1,
Pr ogr an¥l,
M di | nChannel =1) ;
Synt hst r eamAssi gnnent (Bank MSB=1,
BankLSB=1,
Pr ogr anr2,

M di | nChannel =2) ;

Chapter 7SynthScript Update commands

SynthScript update commands are used to update the value of an internal point in an algorithm. Event that these points
are different than what the public API can access. SynthScript update commands can be use to directly set valuesin the
implementation of an algorithm. Typically update commands are used to update the values from sliders on inspectors.
Event however, that though update commands can be use to update values in the implementation of algorithm, they
cannot be used to change the topology of the algorithm.

Update commands require the MIDI channel that the algorithm is running on in order to be able to access the algorithm.
An example of an update command for the freq slider on an oscillator that is allocated on MIDI channel 1 isthe
following:

1: SubAl gorithml/ nyGscillator([freq=445.0]);

Notice that the name of the oscillator isafully hierarchical path. When a dlider is moved , these commands can be sent
down, and evaluated immediately. For instance a slider move might produce the following:

: SubAl gorithml/ myGscillator([freq=445.0]);
: SUbAl gorithnil/ myGscillator([freq=449.0]);
: SubAl gorithnil/ myGscillator([freg=500.0]);
: SubAl gorithml/ myGscillator([freq=530.0]);

N N e e

: SUbAl gorithnil/ myGscillator([freg=560.0]);

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (52 of 77) [1/22/2002 12:26:51 PM]

SynthScript
1: SubAl gorithml/ nyGscillator([Treq=600.0]);

In R1.0 only Int, Real values and ControlPar bindings can be sent in update messages. In R1.1, update messages can
send any SynthScript constant data type.

Chapter 8 SynthScript Run Time Support Commands

A number of SynthScript commands are provided to support things like runtime allocation of patches, system reset,
probing and muting of audio and midi cables.

8.1 Algorithm allocation

Allocation of patchesis supported with the command SynthStreamAssignment. The command looks like this. This will
allocate the program found at 0/50/1 on MidiChannel number 1 on the default SynthStream. R1.1 may add support for
allocating patches on different SynthStreams.

Synt hSt r eamAssi gnrrent (Bank MSB=0,

BankLSB=50,

Pr ogr ame1,

M di | nChannel =1) ;

Also for legacy support with older versions of SynthScript, this command may be also invoked as:

M di Channel Assi gnnent (BankMsSB=0,

BankLSB=50,

Progr an¥l,

M di | nChannel =1) ;

Also a patch can be deallocated from a MIDI channel with the MidiChannel Clear command. For instance, if you wish to
deallocate the algorithm allocated on MIDI channel 1, it can be deallcoated with:

M di Channel d ear(1);
8.2 MidiChannel Mute/Unmute.

MIDI channdls can be muted and unmuted with the MidiChannel M ute and MidiChannel Unmute commands. For
example muting and unmuting of MIDI channel 1:

M di Channel Mute(1) ;
M di Channel Unnute(1) ;
8.3 Instance Probe/Unprobe, Mute/Unmute

These commands are a variation on update commands. They require the MIDI channel that the algorithm is running on
in order to be able to access the algorithm. They are used to probe/unprobe AudioNets, and to mute/Unmute EventNets.

Probe will probe the output audio pin of a UnitGenerator. It needs to be passed the midiChannel, afully hierarchical
instance name, and the name of the pin to be probed. Here is an example of a probe on the "out" pin of an oscgina
running patch running on MidiChannel 1;

1: Probe(SubAl gorithml/ myGsc, out) ;

Hereis how to remove that probe.

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (53 of 77) [1/22/2002 12:26:51 PM]

SynthScript
1: unProbe() ;

Probe will mute the output MIDI pin of a EventFilter. Aswith Probe, It needs to be passed the midiChannel, afully
hierarchical instance name, and the name of the pin to be muted. Here is an example of a mute on the "out” pin of an
scaleNF in arunning patch running on MidiChannel 1;

1: Mut e(SubAl gori t hml/ nyScal e, out) ;

Here is how to remove that mute.
1. UnMute() ;

8.4 Simple Commands

The following commands do not take arguments, and are terminated with a semicolon.
QUIT Quit stream ng SynthScript session

LI STI NG Enabl e SynthScript |isting generation

NO_LI STI NG Di sabl e SynthScript listing generation
TRACE_GLOBAL_NOTE_UPDATES Enabl e traci ng of note updates
NO_TRACE_GLOBAL_NOTE_UPDATES Di sabl e traci ng of note updates
TRACE_GLOBAL_NOTE_ONS" Enabl e tracing of note ons

NO TRACE_GLOBAL_NOTE_ONS Di sabl e tracing of note ons
TRACE_GLOBAL_NOTE_COFFS Enabl e tracing of note offs

NO _TRACE_GLOBAL_NOTE_OFFS Di sabl e tracing of note offs
TRACE_GLOBAL_NOTE_DURS Enabl e tracing of note durs

NO _TRACE_GLOBAL_NOTE_DURS Di sabl e tracing of note durs
TRACE_OBJECTS VERBOSELY Enabl e traci ng of objects verbosely

NO_TRACE_OBJECTS_VERBCSELY Di sabl e traci ng of objects verbosely

The following commands are only available in debug builds.
LI ST_TOKENS Enabl e listing |exical tokens

NO LI ST_TOKENS Di sabl e listing |exical tokens

DUMP_TABLES Dunp all DLA tables to the log file

SYSTEM RESET Reset the whole system frees nenory

MEM USAGE Dunp statistics on memusage for all tables

Chapter 9Formal Grammar

9.1 Lexical Conventions

Lexically SynthScript consists of tokens, special characters and blank space. All of these lexical entities are formally
defined by regular expressions. The lexical analyzer partitions the input stream into token types (which are integers), and
values for certain tokens. The parser uses thisinteger based stream of token types to parse and recognize legitimate
syntactic formulations, and to execute actions on reduction of a known formulation.

Thelexical conventions for SynthScript are primarily defined as regular expressions. Event that this document will not
define the syntax of regular, expressions. These are defined in other books such as the Aho and Ulmans "Principles of
Compiler Design”. The lexical analyzer in SynthScript isimplemented with Lex. The following are the lexical
conventions for SynthScript.

9.1.1 Comments

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (54 of 77) [1/22/2002 12:26:51 PM]

SynthScript

C and C++ style comments are supported. These comments are recognized by the following regular expressions:
c_comment "/ xUU/UR(IAR]LAR]I R[N)RR
cpp_conment "//".*$

9.1.2 White Space

White space is defined as either anewline, atab, a backspace or a carriage return. White space is recognized by the
following regular expression:

whiteSpace [\n\t\b\r]
9.1.3 Integer Constants

Integer constants can be specified in either conventional integer notation (example: 123), or in hex notation (example:
O0xffOb4104). Integer constants are recognized by the following regular expressions:

int -?[0-9]+
hex Ox[a-fA-FO0-9]+

9.1.4 Real Constants

Real constants can be specified in floating point or scientific notation. Event that corner cases such as 1E-1 and 1el are
all considered to be real constants.). Real constants are recognized by the following regular expression:

real -?(([0-9]+)|([0-9]*(\.[0-9]+)?)([eEI[-+]?[0-9]+)7?)
9.1.5 String Constants
String Constants are defined as quoted strings. String constants are recognized by the following regular expression:
string \"["]*["]
Event that string constants CAN contain a newline character.
9.1.6 Identifiers
Identifiers are recognized by the following regular expression:
identifier [a-zA-Z /][a-zA-Z_0-9/]*
9.1.7 Special Characters
The following special characters are recognized as defined.
bl ockBegin "{"
bl ockEnd "}"
i nstancel nfoBegin " ("
i nstancel nfoEnd ")"
assi gnnent ToConst ant " ="
seperator ","
control ParBind ":"

st atenent Term nator ";"

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (55 of 77) [1/22/2002 12:26:51 PM]

SynthScript
tagBegin "<”

tagEnd ">"
9.1.8 Lexical Include

A lexical include mechanism is provided. When the special token #include is recognized, the next token must be a
quoted string. At the time that #include is recognized, the current lexical state is pushed on a stack, and the quoted string
isopened as afilereference. Lexical analysis/parsing continues with this new file, and new lexical state until end of file
(EOF) is encountered. When EOF is encountered, the new fileis closed, and the lexical state is restored from the stack.
Event that unlike C, #include may appear anywherein aline, and can even appear multiple times.

9.1.9 Keywords

The following identifiers are SynthScript keywords.
" SubAl gori t hnt
"Al gorithnt
"Real "
"Int"
"String"
"IntArray"”
"Real Array"
" RonJG'
"List"
" Control Par"
" Audi oNet "
"Event Net "
"Control Pin"
" Bank MSB"
" BankLSB"
" Sanpl i ngRat e"
"Ti ckSi ze"
" Progr ant
" DLEBus"
"M di I nChannel "
"M di Qut Channel "
" EXPORTED"
"Ver si on"
"Event"
"EventOF f "
"Event On"

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (56 of 77) [1/22/2002 12:26:51 PM]

SynthScript
"kvent bur”

"Event Updat e"

"Mt e"
"UnMit e"
" Probe"
" UnPr obe"
"DLS"
"Palette"

" Synt hstreamAssi gnnent "

"M di Channel Assi gnnment "

"M di Channel C ear"

"M di Channel Mt e"

"M di Channel Unnut e"

"LI STI NG'

"NO_LI STI NG’

"LI ST_TOKENS"

"NO LI ST_TOKENS"

" DUVP_TABLES"

" SYSTEM RESET"

QU T

" MEM_USAGE"

" TRACE_GLOBAL_NOTE_UPDATES"
"NO_TRACE_GLOBAL_NOTE_UPDATES"
" TRACE_GLOBAL_NOTE_ONS"
"NO_TRACE_GLOBAL_NOTE_ONS'
"TRACE_GLOBAL_NOTE_OFFS"
"NO_TRACE_GLOBAL_NOTE_OFFS"
" TRACE_GLOBAL_NOTE_MJTES"
"NO_TRACE_GLOBAL_NOTE_MUTES"
" TRACE_GLOBAL_NOTE_DURS"
"NO_TRACE_GLOBAL_NOTE_DURS"
"TRACE_OBJECTS VERBOSELY"
"NO_TRACE_OBJECTS_VERBCSELY"

9.1.10 Support for error handling

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (57 of 77) [1/22/2002 12:26:51 PM]

SynthScript

The lexical analyzer provides to mechanisms for error handling.

« If any lexical item does not conform to the SynthScript lexical conventions, an error message is generated, and
parsing continues. Event that the parser itself has a mechanism for error handling. Thiswill be descibed later.

« Thelexica analyzer keeps atrack of a2 token stack and the index into the current line of text that is being
analyzed. If the parser generates an error, thisinformation can be used to generate an error message, that bounds
the place where the error occurs. Thiskind of error message |ooks something like this:

(0000028) o0scgUG MyGscil l ator (0000029) (out=o0scgUBut, ; control =sliderNFQut, *
parse error at line [0000029] between <,>, and <;>.

(0000030) [anp=0.5, (0000031) freqg=440.0: Cscill atorFrequency, (0000032) phase=0.0,
(0000033) trace=0](0000034));

Synt hCore: The SynthScript patch HelloWwrld was read,

0 warnings, 1 errors.

9.1.11 Encryption

A simple XOR based encryption mechanism is provided. Encryption/Decryption is handled at the input level of the
lexical analyzer. This means that by the time that characters have been read into the lexical analyzer, they have already
been decrypted. The goal of encryption in R1.1 was prevent the causual user from viewing DLA files. The goal was
NOT to proved a bullet proof method of keeping hard core hackers from viewing SynthScript files.

SynthScript files may be in 3 possible forms:

o Clear text.

o User password encrypted.

« Staccato password encrypted.
There isamagic byte that is not an ASCII character that can optionally appear as the first byte of a SynthScript file. If
the byte does not appear as the first byte of a SynthScript file then the file is clear text. If the byte appears with the value

STACCATO_ENCRYPTED (0x02), then the file is encrypted with the Staccato password ("Hafnarfjordur") . If the byte
appears with the value USER_ENCRY PTED (0x01), then the file is encrypted with a user defined password.

The actual algorithm for encryption isdefined in ...srctree\tools\xorencrypt. Its based on calculating an XOR byte for
each character in the file using the password and the characters file position as a part of the calculation function, and then
XOR-ing this byte with the current character.

9.1.12 Reading SynthScript from afile or from an interactive stream

SynthScript can be read from afile, or from an interactive stream. The public API provides procedure callsto either open
and read a SynthScript file, or to pass SynthScript to the interactive stream. The reading of SynthScript, either from a
file, or from an interactive stream is handled at the input level of the lexical analyzer.

9.2 Parsing SynthScript

Once SynthScript is reduced to a stream of token types (integers) and values for certain tokens, then parsing can begin. .
The parser uses thisinteger based stream of token types to parse and recognize legitimate syntactic formulations, and to
execute actions on reduction of a known formulation.

The syntax for SynthScript is specified formally in BNF (Backus-Naur Form). Event that this document will not define
BNF. This are defined in other books such as Aho and Ulmans " Principles of Compiler Design". The syntax SynthScript

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (58 of 77) [1/22/2002 12:26:51 PM]

SynthScript

consists of arecursive set of formulations, that are constructed from either terminal token types, or from formulations.
These formulations are reduced to a set of parse tables.

Parsing consists using a shift/reduce stack machine to compare the input token type stream to the parse tables. Token
types are shifted into the stack machine. If aformulation is recognized in a steam of token types, then the token type
stream is reduced to the formulation. This continues until either the input is exhausted, the root formulation is reduced,
or an error is generated. Event however, that even errors are defined as a part of the syntax, so that they can be handled,
and so that parsing can continue. The parser for SynthScript was written with Y acc.

9.2.1 Error handlingin Parsing SynthScript

The key to successful error handling in Yacc, isto include error handling in the definition of the syntax. Event that Y acc
places the special token "error” on the shift/reduce stack machine, when an error occurs. The goal is, when an error is
detected, to skip forward to aterminating symbol, so that parsing can continue. The trick, isto include the token "error"
in the definition of all recursive formulations. Recursive formulations, are basically lists. The following table explains
how to transform recursive formulations for effective error handling.

The following are possible recursive formulations.
CLOSURE (OPTI ONAL SEQUENCE) ==>
(x*)

x_list

| x_list x

POSI TI VE CLOSURE (SEQUENCE) ==>
(x+)

X _list : X

| x_ list x

SEQUENCE W TH SEPERATOR ==>
Xx_list : X

| x_list SEP x

These can be transformed for error handling in the following way:
x_list @ x_list

| x_list x| x_list Xx

{ yyerrok;}

| x_list error

X _list : x ==> x_list : x

| x_list x| x_list x

{ yyerrok;}

| error

| x_list error

Xx_list @ x ==> x_list : x

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (59 of 77) [1/22/2002 12:26:51 PM]

SynthScript
| x list SEP x | x_list SEP x

{ yyerrok;}

| error
| x_ list error

| x_list error x

{ yyerrok;}

| x_list SEP error

9.2.2 BNF syntax for SynthScript.
Synt hScri pt
nmodul eLi st
nmodul eLi st
: [* nothing */
| modul eLi st nodul e
nmodul e
enpt ySt at enent
| patch
| update
| command

| palette

enpt ySt at ement

i

palette

pal ett eHeader '{' patchList '}’
pal ett eHeader

PALETTE_KW pal etteName ' (' ')

pal ett eName

| DENTI FI ER

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (60 of 77) [1/22/2002 12:26:51 PM]

SynthScript
pat chLi st

/* nothing */
| patchList patch
pat ch
pat chHeader pat chBody
pat chHeader
pat chType patchNane ' (' optionalInterfaceDeclarationList ")’
pat chType
PATCH_KW
| SUBPATCH_KW
pat chNane
pat chNamel dOr Stri ng
pat chNanmel dOr Stri ng
| DENTI FI ER
| STRI NG
optional I nterfaceDecl arati onLi st
/* nothing */
| interfaceDecl arationLi st
i nterfaceDecl arati onLi st
interfaceDeclaration

| interfaceDeclarationList ',' interfaceDeclaration
interfaceDeclaration
hi er ar chi cal Connecti on
| patchStateVector
hi er ar chi cal Connecti on
AUDI ONET_KW | DENTI FI ER
| M DI NET_KW I DENTI FI ER
| CONTROL_PI N_KW I DENTI FI ER
pat chSt at eVect or

'"['" patchStateDeclarationList ']’

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (61 of 77) [1/22/2002 12:26:51 PM]

SynthScript

1

pat chSt at eDecl ar ati onLi st
pat chSt at eDecl arati on
| patchStateDeclarationList ',' patchStateDeclaration
pat chSt at eDecl arati on
BANKMSB_KW ' =" SSP_I NT
| BANKLSB_ KW' ="' SSP_I NT
| PROGRAM KW' ="' SSP_I NT
| SAMPLI NG RATE_KW' =" sanpl i ngRat eVal ue
| TICK SIZE KW'=" SSP_INT
| VERSI ON_KW' =" SSP_I NT
| IDENTIFIER =" SSP_INT
| IDENTIFIER '=" SSP_REAL
sanpl i ngRat eVal ue
SSP_REAL
| SSP_INT
pat chBody
"{' statementList '}’
st at enent Li st
/* nothing */

| statenentList statenent

st at enent
enpt ySt at enent
| control ParanDecl arati on
| instance
| vari abl eAssi gnnent
control ParanDecl arati on
CONTROLPARAMETER_KW control ParaneterList ';'
control Paranet erLi st
control Paranet er

| control ParaneterList ',' control Paraneter

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (62 of 77) [1/22/2002 12:26:51 PM]

SynthScript

control Paranet er

| DENTI FI ER

i nstance
i nst anceBody
i nst anceBody
i nstanced ass instanceNanme optional SanplingRate
'(' optional AssignmentList ')
| EXPORTED_KW i nst anceC ass i nstanceNane optional Sanpl i ngRat e
'(' optional AssignmentList ')
i nstanced ass
| DENTI FI ER
| STRING
| AUDI ONET_KW
| M DI NET_KW
/* the reduction of "instanceNanme" starts adding things to the tables */
i nst anceNane
i nst anceNanel dOr String
i nstanceNanel dOr Stri ng
| DENTI FI ER
| STRING
opti onal Sanpl i ngRat e
/* nothing */
| SSP_REAL

| SSP_INT

opti onal Assi gnnent Li st
/* nothing */

| assignment Li st

assi gnment Li st
assi gnnent
assi gnment

pat chi ngAssi gnnent

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (63 of 77) [1/22/2002 12:26:51 PM]

SynthScript

| stateAssl gnment Vect or
pat chi ngAssi gnnent

pi nNanme ' =' net wor kNane
pi nName
| DENTI FI ER
net wor kNane
| DENTI FI ER
st at eAssi gnnent Vect or
'[' optional StateAssignnmentList ']’
opti onal St at eAssi gnment Li st
/* nothing */
| stateAssignmentList
st at eAssi gnment Li st
st at eAssi gnnent

| stateAssignmentList ',' stateAssignnent

st at eAssi gnment

st at eAssi gnnent Vari abl eNane ' =" SSP_REAL
| stateAssignnmentVariabl eNanme '=' SSP_REAL ':' | DENTIFIER
| stateAssignnentVariabl eName ' =" SSP_| NT
| stateAssignnentVariabl eName ‘=" SSP_INT ':' | DENTIFIER
| stateAssignnent Variabl eName ' =" STRI NG
| stateAssignmentVariabl eName '=' STRING ':' | DENTIFI ER
| stateAssignnent Variabl eName ' =" array
| stateAssignnentVariableName '=' array ':' |DENTIFIER
| stateAssignnment Vari abl eName '=' note
| stateAssignnmentVariabl eName '=' note ':' | DENTIFIER
| stateAssignnent Variabl eName '=' [ist
| stateAssignmentVariableName '=" list ':' |DENTIFIER
| stateAssignnent Variabl eName ':' | DENTI FlI ER
| stateAssignnent Vari abl eName ' =" | DENTI FI ER
| stateAssignnment Variabl eName '=' I DENTIFIER ':' |DENTIFIER

i

st at eAssi gnnent Var i abl eNane

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (64 of 77) [1/22/2002 12:26:51 PM]

SynthScript
I DENII HI ER

/* vari abl eAssi gnment */
vari abl eAssi gnment
vari abl eTypeDecl aration '
vari abl eTypeDecl arati on
real Vari abl e
| intVariable
| stringVariable
| noteVariable
| listVariable
| real ArrayVari abl e
| intArrayVariabl e
| DSPreal ArrayVari abl e
real Vari abl e

SSP_REAL_KW variable ' = SSP_REAL

i ntVariabl e
SSP_INT_KWvariable '=" SSP_I NT
stringVariabl e

STRING KW variable '=" STRI NG

not eVari abl e
NOTE_KW vari able '='" note
not e
"{' noteType '}’
| "{'" noteType ',' noteParlList '}
not eType
NOTEON_KW
| NOTEOFF_KW
| NOTEUPDATE KW }
| NOTEDUR_KW

| MUTE_KW

not ePar Li st

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (65 of 77) [1/22/2002 12:26:51 PM]

SynthScript

not ePar Assi gnnent

| noteParlList ',' noteParAssignment

not ePar Assi gnnent

notePar '='" SSP_REAL
| notePar '=' SSP_INT
| notePar '='" STRING
| notePar '=' array
| notePar '=' list
not ePar

| DENTI FI ER

real ArrayVari abl e
real ArrayKeyword variable '='" array
real ArrayKeywor d

REAL_ARRAY_ KW

intArrayVari abl e
intArrayKeyword variable '='" array
i nt ArrayKeywor d

| NT_ARRAY_KW

DSPr eal ArrayVari abl e
DSPr eal ArrayKeyword variable '='" array
DSPr eal Arr ayKeywor d

ROMUG_KW

l'istVariable
LI ST_KWvariable '=" list
vari abl e

| DENTI FI ER

/1 the array data type

array

‘{' arrayList "'}’

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (66 of 77) [1/22/2002 12:26:51 PM]

SynthScript

arraylLi st
arraylListltem
| arrayList ',' arrayListltem
| error
| arraylList error
| arraylList error arraylistltem
{ yyerrok;}
| arrayList ',' error
arraylListltem
SSP_INT
| SSP_REAL
| STRI NG
| STRING '@ dl sDescri ptor
dl sDescri pt or
DLS KW' (' SSP_INT '":'" SSP_INT ':"' SSP_INT ':' SSP_INT ":" SSP_INT ")
| DLS KW' (' SSP_INT ':' SSP_INT ':' SSP_INT ')
// the list data type
l'ist
startList |istBody endLi st
|'i st Body
/* nothing ... the nil list () is supported as well */
| listBody listltem
listltem
array
| note
| "{' instanceBody '}
| "{' variabl eTypeDecl aration '}
| 1 DENTI FI ER
| list
startlList

e

endLi st

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (67 of 77) [1/22/2002 12:26:51 PM]

SynthScript
e

/*

code to handl e updates,

Updates are sent

by

i nspector sliders to the server

*/
updat e
st at ePr ocUpdat e
| probe
| unprobe
| mute
| unmute

1

st at ePr ocUpdat e

m di Channel
m di Channel

SSP_INT
updat el nst anceNane

| DENTI FI ER
updat eVect or

'[' updat eExpression
updat eExpr essi on

updat eSt at ePr ocNane '
| updat eSt at ePr ocNane
| updat eSt at eProcNane '
| updat eSt at ePr ocNane
| updat eSt at eProcNane '
| updat eSt at ePr ocNane
| updat eSt at eProcNane '
| updat eSt at ePr ocNane
| updat eSt at eProcNane '
| updat eSt at ePr ocNane
| updat eSt at eProcNane '
| updat eSt at ePr ocNane

i

updat eSt at ePr ocNane

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (68 of 77) [1/22/2002 12:26:51 PM]

updat el nst anceNane ' ('

updat eVector ')’

SSP_REAL
SSP_REAL ':' | DENTIFI ER
SSP_I NT
SSP_INT '":' | DENTI FI ER
STRI NG
STRING ':" [DENTIFI ER
array
array ':' | DENTIFIER
l'ist

l'ist | DENTI FI ER
| DENTI FI ER

| DENTI FI ER

SynthScript
I DENII HI ER

| *
Probe and Miute conmands
*/
pr obe
m di Channel ':' PROBE_KW' (' updatel nstanceName

",' probelnstancePin ') ';'

probel nst ancePi n

| DENTI FI ER
unpr obe
m di Channel ':' UNPROBE_KW' (' ')' ';'
nmut e
m di Channel ':' MJTE_KW' (' updat el nstanceNane

nmut el nstancePin ')" ';"'

nmut el nst ancePi n

| DENTI FI ER

unmut e
m di Channel ':' UNMUTE_KW' (' updat el nstanceNane

unmut el nstancePin ")" ';"'

unnut el nst ancePi n
| DENTI FI ER
/* comands */
command
synt hst r eamAssi gnnent
| channel C ear
| channel Mute
| channel Unnut e
| sinpl eCmrd
/* channel synthstreamAssi gnnent */

synt hst r eamAssi gnment

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (69 of 77) [1/22/2002 12:26:51 PM]

SynthScript
synt hstreamAssi gnment KW " (°

opti onal Synt hst reamAssi gnnent ParaneterList ')' *;
synt hst r eamAssi gnment KW
M DI _CHANNEL _ASSI GNVENT_KW
| SOUND_STREAM ASSI GNVENT_KW
opti onal Synt hst r eamAssi gnnent Par anet er Li st
/* nothing */
| soundSt eamAssi gnnent Par anet er Li st
soundSt eamAssi gnnent Par anet er Li st
soundSt eamAssi gnnent Par anet er
| soundSt eamAssi gnnent Paranet erLi st ',' soundSteamAssi gnnent Par anet er
soundSt eamAssi gnnent Par anet er
M DI _I N_CHANNEL_KW ' =' SSP_I NT
| M DI _OUT_CHANNEL_KW ' =" SSP_I NT
| BANKMBB_KW' ="' SSP_INT
| BANKLSB_KW' =" SSP_I NT
| PROGRAM KW' ="' SSP_I NT
| DLE_KW'=" SSP_I NT
| IDENTIFIER '=" SSP_INT
| I'DENTIFIER '=" SSP_REAL
channel C ear
M DI _CHANNEL_CLEAR KW' (' SSP_INT ')' ';'
channel Mut e
M DI _CHANNEL_MJTE_KW ' (' SSP_INT ")" "'
channel Unmut e
M DI _CHANNEL_UNMUTE_KW ' (' SSP_INT ')' *;'
/* sinple commands */
si npl eCd
QU T KW' ;"
| DUMP_TABLES_KW' ;'
| LISTING KW";"

| NCLISTING KW*' ;"'

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (70 of 77) [1/22/2002 12:26:51 PM]

SynthScript
LI STTOKENS_KW * ; *

NOLI STTOKENS_KW ' ;!
MVEM USAGE KW' ;'
SYSTEM RESET_KW' ;"

TRACE_GLOBAL_NOTE_UPDATES_ KW' ;'

NOTRACE_GLOBAL_NOTE_UPDATES KW' ;°

TRACE_GLOBAL_NOTE_ONS_KW ' ;"
NOTRACE_GLOBAL_NOTE_ONS KW' ;'
TRACE_GLOBAL_NOTE_MJTES_ KW' ;'
NOTRACE_GLOBAL_NOTE_MUTES_KW ' ;'
TRACE_GLOBAL_NOTE_DURS KW' ;'
NOTRACE_GLOBAL_NOTE_DURS KW' ;'
TRACE_GLOBAL_NOTE_OFFS KW' ;'
NOTRACE_GLOBAL_NOTE_OFFS KW' ;'
TRACE_OBJECTS_VERBOSELY KW' ;'

NOTRACE_OBJECTS_VERBOSELY_KW' ;'

9.3 Pre-defined ControlParsin SynthScript

Some ControlPars are, by convention, predefined in SynthCore to have particular uses.

9.3.1 ControlParsused in therepresentation of MIDI

MIDI messages are converted into events when they enter SynthCore as listed below.

9.3.1.1 MIDI Channéd Voice M essages

Note that there is no representation for MIDI channel in the event object—the MIDI channel is used by the DLA
Manager to forward the event to the proper DLA.

Note On messages are converted to event objects with eventType noteOn and control Pars keyNum [0-127] and
normalizedVel ocity [0.007-1.0]. MIDI Note Ons with a velocity of 0.0 are considered the same as MIDI Note Off.

Note Off messages are converted to event objects with eventType noteOff and control Pars keyNum [0-127] and
normalizedRel Vel ocity [0.0-1.0], which specifies the release velocity. MIDI Note Ons with a velocity of 0.0 are
converted to noteOff events, but are not given a normalizedRel Vel ocity parameter.

Polyphonic K ey Pressure messages are converted to event objects with eventType noteUpdate and control Pars
keyNum [0-127] and normalizedKeyPressure [0.0-1.0].

After-touch (channel pressure) message are converted to event objects with eventType noteUpdate and
control Par normalizedAfter Touch [0.0-1.0].

Program change messages are converted to event objects with eventType noteUpdate and control Par
programChange [0-127]. In addition, program change events cause the DLA Manager to (possibly) select a new
DLA for the given MIDI channel.

Pitch bend messages are converted to event objects with eventType noteUpdate and control Par pitchBend
[0-0x3fff]. The default value is 0x2000, which represents no pitch bend.

Controller messages are converted to event objects with eventType noteUpdate and a control Par that specifies
which controller was changed. The controlPars for MIDI controllers 0-120 are the following (names taken from
the MIDI specification). All are normalized in the range [0.0-1.0], except as noted. L SBs are not currently

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (71 of 77) [1/22/2002 12:26:51 PM]

SynthScript
automatically combined with M SBs except where noted. ControlPars in parenthesis are used internally only.

Control Par M DI Nunber Speci al Notes

bank Select 0 *[0-127]
nodWheel 1
breathController 2
control 3 3

footController 4
portanentoTine 5

dat aEntryMsSB 6 See bel ow
channel Vol ume 7 *

bal ance 8

control9 9

pan 10 *
expressionControl ler 11 *
effectControl 1 12 *
effectControl 2 13 *
control 14, 14

control 15 15

gener al PurposeControl | er1-
gener al PurposeControl l er4 16-19
control 20-control 31 20-31
bankSel ect LSB 32 [0-127]
nodWheel LSB 33
breathControl | erLSB 34
<etc. as above: LSB> 35-63 < * as with MSB >
danper Pedal 64

port ament oOnOfF f 65
sostenuto 66

sof t Pedal 67

| egat oFoot swi tch 68

hol d2 69

soundControl | er 1-
soundControl |l er10 70-79 *
gener al Pur pose5-

gener al Pur pose8 80-83
port anment oCont r ol

control 85-90 85-90

ef f ect s1Dept h-

ef fect s5Depth 91-95 *

dat al ncrenent 96 See bel ow

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (72 of 77) [1/22/2002 12:26:51 PM]

SynthScript

dat aDecr ement 97 See bel ow

(nonRegi st er edPar amet er Nunber LSB) 98 See bel ow
nonRegi st er edPar anet er Number 99 [0-0x3fff] See bel ow
(regi st eredPar anet er Nunmber LSB) 100 See bel ow

(regi st eredPar anet er Nunber VsB) 101 See bel ow

control 102-control 119 102-119
Special notes

1. datalncrement, dataDecrement, dataEntryM SB and dataEntryL SB are sent as control Pars only when they apply to
NRPNs. When the apply to RPNs, they are intercepted by the SynthCore MIDI parser and interpreted to set the
appropriate value.

2. The nonRegi steredParameter Number controlPar contains a 14-bit number with both the MSB and L SB of the NRPN.
3. RPNs are interpreted by the MIDI parser and sent as special parameters.

a. the RPN "pitchBendSensitivity" is converted to the control Par

pitchBendSensitivity, with unitsin semitones (from -127.99 to 127.99).

b. the RPNs "fineTuning" and "coarseTuning" are combined and included in

asingle parameter tuning with unitsin semitones (from -64.99 to 64.99).

c. the RPN "tuningProgramSelect” is sent as an integer

d. the RPN "tuningBankSelect” is sent as an integer

4. *" under "specia notes' above indicates that the controller does not get reset when the MIDI resetAllControllers
message is received.

5. When aDLA isallocated, it is sent an event that describes the sticky state of the MIDI channel on which the DLA is
listening. Thisevent is of type noteUpdate and contains the following information:

a. Current value of pitchBend. (initial value = center position = 0x2000)
b. Current value of normalizedAfterTouch. (initial value = 1.0)

c. All MIDI controllers-based control Pars that have either been received via MIDI or that have default values
that are not 0.0.

Thelist of MIDI controllers-based control Pars with non-zero defaultsis:
channelVVolume (initial value = 100/127.0)

expressionController (initial value = 1.0)

pan (initial value = 0.5)

effectslDepth (initial value = 40/127.0)

Any MIDI controllers-based control Par not received by the DLA should be assumed to have the value 0.0.
9.3.1.2 MIDI Channel Mode

M essages are converted to event objects with eventType mute and a control Par chanMode, which can accept the
following constant values:

al | SoundOr f

resetControllers

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (73 of 77) [1/22/2002 12:26:51 PM]

SynthScript
| ocal Control ModeOn

| ocal Control ModeCr f
al | Not esOf f

omi ModeOX f

omi ModeOn
nonoMode

pol yMode

In addition to being included in the event object, certain of these are interpreted by SynthCore in special ways.
allSoundOff and allNotesOff both stop any sounding voices. resetControllers behaves as suggested by the MIDI
Developer Guidelines. It resets al MIDI controllersto O except those indicated above with **” in section 9.3.1.1. Thisis
sent to the DLA listening on that MIDI channel in the form of an event with the appropriate parameters. In addition, the
event contains a pitchBend value of 0x2000 (center value) and a normalizedAfterTouch value of 0.0. Then a series of
128 events are sent to reset the normalizedK eyPressure to 0.0 for each of the 128 keyNum values. Each of these events
includes both a normalizedK eyPressure value and a keyNum val ue.

All of the other chanMode values have no pre-defined effect. Note that the monoMode value includes a second
control Par, monoChans [0-15], as specified in the MIDI specification.

9.3.1.3 MIDI System Common

M essages are converted to event objects with eventType mute and a control Par that depends on the type of message.
MIDI Time Code Quarter Frame messages include a control Par timeCodeQ [0-127]. Song Position Pointer messages
include a control Par songPosition [0-0x3fff], which contains both the MSB and the LSB of the song position. Song
Select messages include the control Par songSelect [0-127]. Tune Request messages are indicated by the presence of the
control Par tuneRequest; its valueisirrelevant.

9.3.1.4-MIDI System Real Time

M essages are converted to event objects with eventType mute and a control Par sysReal Time, which can accept the
following constant values:

sysd ock

sysUndef i nedOxf 9

sysStart

sysConti nue

sysSt op

sysUndef i nedOxfd

sysActi veSensi ng,

sysReset
9.3.1.5-MIDI System Exclusive

M essages are converted to event objects with eventType mute (unless otherwise specified below) and a control Par
sysExclusive, whose value is an IntArray containing the system exclusive data, packed little-endian.

Several special System Exclusive messages are interpreted by SynthCore. These include:

* MIDI master tuning — This is encoded in the master Tuning control Par as areal value in semitones. The voiceAllocNF
uses this to produce the proper tuning offset for each note. This parameter isincluded in an event of type noteUpdate.

9.3.1.6 MIDI Channel Mode

M essages are converted to event objects with eventType

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (74 of 77) [1/22/2002 12:26:51 PM]

SynthScript

9.3.2 ControlPars provided by the Voice Allocator

Cetrain pre-defined control Pars are managed by SynthCore to make it easy to devel op sophisticated synthesis
algorithms.

9.3.2.1 Automatic Management of Frequency

The voiceAllocNF provides two control Pars, freq and pitch, as a convenience to the DLA developer. It does this by
combining all the MIDI controlPars that deal with the sounding pitch of the note (keyNum, pitchBend, tuning,
pitchBendSensitivity, etc.), and converting them to a single convenient value, which is presented in two formats: freq in
Hertz, and pitch in scale degrees. Both values are reals.

An example will help to clarify this. If pitchBendSensitivity is 1, pitchBend is 0x1000, and keyNum is 69, then pitch will
be set to 68.5 and freq will be set to a quarter tone below 440.0.

Note that freq and pitch are provided in any event that deals with pitch. For example, all incoming events with control Par
pitchBend are converted into events with freq and pitch control Pars by voiceAllocNF.

9.3.2.2 Information on Voice Status

The voiceAllocNF does sophisticated management of synthesis resources, forwarding notes to appropriate voices
(depending on its mode), and preempting voices when synthesis resources are scarce. Often, the voices (subpatches)
themselves need some information about what role they are currently playing. To support this, the voiceAllocNF inserts
a control Par voiceStatus into the eventsit sends. The following values of voiceStatus are supported:

« VoiceStart—A new voice, not previously sounding, has been allocated in response to a noteOn event.

« VoiceRestart—A voice that was previously sounding, and had already received a noteOff event, has received a
noteOn event, and is thus being "restarted” (aka "retrigger”.)

« VoiceRestartLegato—A voice that was previously sounding, and has not already received a noteOff event, has
received another noteOn event.

« VoiceRelease—A voice that was previously sounding has just received a noteOff event.

« VoicePreempt—A voice that was previously sounding is about to be preempted because synthesis resources are
low.

» VoiceEnd—A voice that was previously sounding is finished making sound and is about to return to the available
pool of voices.

Events with voi ceStatus set to voicePreempt also contain an additional controlPar, preemptionTime, which isthe
duration, in seconds, when the voice will be sent the voiceEnd value. This enables a voice to know how much time it has
to "clean up" in asmooth manner. For example, envUG optionally smooths its envelope to its final value.

9.3.3 ControlPar to Support NoteDur events

Events may have a number of different event types. These are discussed elsewhere in this document [or are they?]. One
eventType, NoteDur, requires a specia controlPar, dur, which specifies the duration of the event. That is, aNoteDur isa
combination of a NoteOn and a noteOff in asingle event. The specified duration is the time (in seconds) between the
implied noteOn and the implied noteOff. It isimportant to understand that not all objectsinterpret dur. In order for a
NoteDur to be properly interpreted it should be sent to one of the following objects:

voiceAllocNF
midiOutNF
9.3.4 ControlPar to Support Standard MIDI File events

Standard MIDI files are represented as event lists. Most of the control Pars needed to represent them are included in
section 9.3.1. However, afew special controlPars apply only to events derived from Standard MIDI Files:

9.3.4.1 Filechannel, track and port meta-events

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (75 of 77) [1/22/2002 12:26:51 PM]

SynthScript

All of these meta-events deal with the location of other events in a sequence. While events derived from performed
MIDI have no channel parameter, since the DLA manager forwards them to the right destination automatically, events
derived from Standard MIDI Files do need to specify the MIDI channel as it appeared in the file [0-15]. These appear as
acontrol Par fChan in any event that has a channel. In addition, Standard MIDI Files have track structure. Thisis
represented in the events with a control Par track [0-infinity]. Finally, the MIDI port that an event is associated with is
represented by the fPort [0-15] control Par.

9.3.4.2 Meta events

Standard MIDI Files define avariety of "meta-events' which are represented as SynthCore events depending on their
type.

The following control Pars have numeric values:

sequenceNunber [0-15]

tenpo (in BPM not "nicroseconds per M D quarter-note")

The following control Pars have string values:
t ext Event

copyright Notice

sequenceOr Tr ackNarme

i nstrument Name

lyric

mar ker

cuePoi nt

The following control Pars have object values:

smpteCf fset -- IntArray
timeSignature -- IntArray
keySi gnature — IntArray

sequencer Speci fic -- Packed IntArray (big-endian)

escapeEvent -- Packed IntArray (big-endian)

9.4 Midi filerepresentation in EventList

Midi files can be represented as noteLists in SynthScript. In order to represent time, anew ControlPar called "beat" is
introduced. Also note that a new ControlPar called fChan has been introduced to represent MidiChannel.
Li st BachFugue = (

{Mute, tenpo=0.151667, beat=0, fChan=1, fPort=1, track=1}

{Mite, sequenceOr TrackNane="partl", beat=0, fChan=1, fPort=1, track=3}

{Mute, sequenceOrTrackNane="part2", beat=0, fChan=1, fPort=1, track=4}

{Mite, sequenceOr TrackNane="part3", beat=0, fChan=1, fPort=1, track=5}

{Event On, keyNum=67, nornalizedVel ocity=0.503937, beat=3.0332, fChan=4, fPort=1, track=4}

{Event O f, keyNum=67, beat=3.41211, fChan=4, fPort=1, track=4}

{Event On, keyNum=69, nornalizedVel ocity=0.503937, beat=3.41211, fChan=4, fPort=1, track=4}

{BEvent O f, keyNum=69, beat=3.79297, fChan=4, fPort=1, track=4}

{Event On, keyNum=71, nornalizedVel ocity=0.503937, beat=3.79297, fChan=4, fPort=1, track=4}

{BEvent O f, keyNum=71, beat=4.17188, fChan=4, fPort=1, track=4}

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (76 of 77) [1/22/2002 12:26:51 PM]

SynthScript

{Event On, keyNum=72, nornalizedVel ocity=0.503937, beat=4.17188, fChan=4, fPort=1, track=4}
{Event O f, keyNum=72, beat=4.54883, fChan=4, fPort=1, track=4}

{Event On, keyNum=67, nornalizedVel ocity=0.503937, beat=4.54883, fChan=4, fPort=1, track=4}

{Bvent O f, keyNumr67, beat=202.853, fChan=3, fPort=1, track=3}
{Event O f, keyNum=43, beat=202.853, fChan=4, fPort=1, track=4}
{Event On, keyNum=36, nornalizedVel ocity=0.503937, beat=202.853, fChan=4, fPort=1, track=4}
{Event O f, keyNum=64, beat=208.919, fChan=2, fPort=1, track=2}
{Bvent O f, keyNumr72, beat=208.919, fChan=2, fPort=1, track=2}

{Event O f, keyNum=36, beat=208.919, fChan=4, fPort=1, track=4}

)

http://www.staccatosys.com/synthcore/sdk12/docs/p170-SynthScript.html (77 of 77) [1/22/2002 12:26:51 PM]

	SynthScript.pdf
	Staccatosys.com
	SynthScript

